# Solution of the Wave Equation in General Spherical Coordinates

• Eugen Skudrzyk

## Abstract

If the solution depends not only on r, but also on the polar angle θ and the azimuth φ, the elementary volume becomes a parallelepiped of length rdθ, of width r sinθ dφ and of height dr as shown in Fig. 1. The wave equation is derived by considering the excess of volume that leaves the elementary volume relative to that entering it. This volume (or mass) of flow consists of three different components:
1. (a)
that through the two surfaces perpendicular to r:
$$- d\tau {{\left[ {div\vec{v}} \right]}_{r}} = {{r}^{2}}\sin \theta d\theta d\phi {{v}_{r}}(r) - {{\left[ {r + dr} \right]}^{2}}\sin \theta d\theta d\phi {{v}_{r}}(r + dr) = {\text{ }} = - \frac{\partial }{\partial }r({{r}^{2}}{{v}_{r}})dr\sin \theta d\theta d\phi ,{\text{ }}gathered$$
(1)

2. (b)
that through the two surfaces normal to the polar axis θ = const:
$$\begin{gathered} - d\tau {[div \vec v]_\theta } = rdrd\phi \sin \theta v\theta (\theta ) - rdrd\phi \sin (\theta + d\theta ){v_\theta }(\theta + d\theta ) = \hfill \\ = - \frac{\partial }{{\partial \theta }}(\sin \theta v\theta (\theta ))rdrd\theta d\phi , \hfill \\ \end{gathered}$$
(2)

3. (c)
that through the two surfaces at φ and φ + :
$$\begin{gathered} - d\tau {[div \vec v]_\phi } = rdrd\theta v\phi (\phi ) - rdrd\theta {v_\phi }(\phi + d\phi ) = \hfill \\ = - \frac{{\partial {v_\phi }}}{{\partial \phi }}rdrd\theta d\phi . \hfill \\ \end{gathered}$$
(3)

## Keywords

Wave Equation Spherical Harmonic Sound Field Spherical Wave Legendre Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Reference

1. Anderson, V. C.: Sound scattering from a fluid sphere. J.A.S.A. 22 (1950) 426.Google Scholar
2. Anderson, D. V., Northwood, T. D., Barnes, C.: The reflection of a pulse by a spherical surface. J.A.S.A. 24 (1952) 276–283.Google Scholar
3. Atherton, E., PETERS, R. H.: Some aspects of light scattering from polydisperse systems of spherical particles. J. Appl. Physics 4 (1953) 344–349.Google Scholar
4. Ballantine, ST.: Effect of diffraction around the microphone in sound measurements. Physic. Rev. 32 (1928) 988–992.
5. Barakat, R. G.: Transient diffraction of scalar waves by a fixed sphere. J.A.S.A. 32 (1960) 61.
6. Barnes, C., Anderson, D. V.: The sound field from a pulsating sphere and the development of a tail in pulse propagation. J.A.S.A. 24 (1952) 229–229.Google Scholar
7. Barnes, C., Northwood, T. D.: Reflection of a pulse by a spherical surface. J.A.S.A. 24 (1952) 276.Google Scholar
8. Bass, R.: Diffraction effects in the ultrasonic field of a piston source. J.A.S.A. 30 (1958) 602.
9. Bondareva, L. N., Karnovskii, M.: Directional properties of acoustic scattering lenses. Sov. Phys. Acoust. 1 (1955) 133.Google Scholar
10. Boyles, C. A.: Radiation characteristics of spherically symmetric, perfect focusing acoustic lenses. J.A.S.A. 45 (1969) 351;Google Scholar
11. Boyles, C. A.: Wave theory of an acoustic Luneberg lens. J.A.S.A. 43 (1968) 709;Google Scholar
12. Boyles, C. A.: Wave theory of an acoustic Luneberg lens. II. The theory of variable density lenses. J.A.S.A. 45 (1969) 356.Google Scholar
13. Byerly, W. E.: Fourier series and spherical harmonics, p. 172, eq. 6. Boston: Ginn and Co. 1893.Google Scholar
14. Chertock, G.: Sound radiation from vibrating surfaces. J.A.S.A. 36 (1964) 1305.Google Scholar
15. Chertock, G., Grosso, M. A.: Some numerical calculations of sound radiation from vibrating surfaces. J.A.S.A. 40 (1966)924 (TNRB).Google Scholar
16. Cohen, D. S., Handelman, G. H.: Scattering of a plane acoustical wave by a spherical obstacle. J.A.S.A. 38 (1965) 837.
17. Copley, L. C.: Fundamental results concerning integral representations in acoustic radiation. J.A.S.A. 44 (1968) 28–32.
18. Cruzan, O. R.: Translation addition theorems for spherical vector wave functions. Quart. Appl. Math. 20 (1962) 33–40.
19. Ehlers, F. E.: Pressure waves in an accelerated sphere filled with a compressible liquid. J.A.S.A. 46 (1969) 605.Google Scholar
20. Einspruch, N. G., Trlrell, R.: Scattering of a plane longitudinal wave by a spherical fluid obstacle in an elastic medium. J.A.S.A. 32 (1960) 214.Google Scholar
21. Embleton, T. F. W.: Mutual interaction between two spheres in a plane sound field. J.A.S.A. 34 (1962) 1714.
22. Engin, A. E.: Vibrations of fluid-filled spherical shells. J.A.S.A. 46 (1969) 186.Google Scholar
23. Faran, J. J.: Sound scattering by solid cylinders and spheres. J.A.S.A. 23 (1951) 405–418.
24. Feit, D., Junger, M. C.: High-frequency response of an elastic spherical shell. J. Appl. Mech., December, 1969.Google Scholar
25. Ferris, H. G.: Free vibrations of a gas contained within a spherical vessel. J.A.S.A. 24 (1952) 57.Google Scholar
26. Fox, F. E.: Sound pressure on spheres. J.A.S.A. 12 (1940) 147–149.Google Scholar
27. Frey, H. G., Goodman, R. R.: Acoustic scattering from fluid spheres. J.A.S.A. 40 (1966) 417.
28. Friedman, B., Russek, J.: Addition theorems for spherical waves. Quart. Appl. Math. 12 (1954) 13–23 (see also STEIN, S. 1961 ).Google Scholar
29. Frisk, G. V., Santo, J. A. De: Scattering by spherically symmetric inhomogeneities. J.A.S.A. 47 (1970) 172.Google Scholar
30. Güttler, A.: Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern and ihre Bedeutung für Probleme der interstellaren Materie and des atmosphärischen Aerosols. Ann. Physik 11 (1953) 65–98.Google Scholar
31. Hart, R. W.: Sound scattering of a plane wave from a nonabsorbing sphere. J.A.S.A. 23 (1951) 323–328.Google Scholar
32. Hayek, S. I.: Vibration of a spherical shell in an acoustic medium. J.A.S.A. 40 (1966) 342.
33. Hickling, R.: Echoes from spherical shells in air. J.A.S.A. 42 (1967) 388.Google Scholar
34. Hickling, R., Means, R. W.: Scattering of frequency-modulated pulses by spherical elastic shells in water. J.A.S.A. 44 (1968) 1246.Google Scholar
35. Hiedemann, E.: Einwirkung von Schall und Ultraschall auf Aerosole. Kolloid Z. 77 (1936) 168–172;
36. Hiedemann, E.: Schallabsorption in feuchter und nebelhaltiger Luft. Verh. deutsch. physik. Ges. 28 (3) (1939) 59 60.Google Scholar
37. Hill, J. L.: Torsional-wave propagation from a rigid sphere semiembedded in an elastic half-space. J.A.S.A. 40 (1966) 376.Google Scholar
38. Hobson, E. W.: The theory of spherical and ellipsoidal harmonics. New York, N. Y.: Chelsea Publishing. 1955.Google Scholar
39. Hodgkinson, T. G.: The response of a spherical fluid particle suspended in air to irradiation with sound at the natural frequency of the particle. Acustica 3 (1953) 383 390.Google Scholar
40. Huang, H.: Transient interaction of plane acoustic waves with a spherical elastic shell. J.A.S.A. 45 (1969) 661.Google Scholar
41. Ingard, U.: On the reflection of a spherical sound wave from an infinite plane. J.A.S.A. 23 (1951) 329–335;
42. Ingard, U.: Near field of a Helmholtz resonator exposed to a plane wave. J.A.S.A. 25 (1953) 1062.Google Scholar
43. Ingaiw, U., Lyon, R. H.: Impedance of a resistance loaded Helmholtz resonator. J.A.S.A. 25 (1953) 854.Google Scholar
45. Junger, M. C.: Sound scattering by thin elastic shells. J.A.S.A. 24 (1952) 366;
46. Junger, M. C.: Surface pressures generated by pistons on large spherical and cylindrical baffles. J.A.S.A. 41 (1967) 1336–1346.Google Scholar
47. Junger, M. C., Thompson, W., JR.: Oscillatory acoustic transients radiated by impulsively accelerated bodies. J.A.S.A. 38 (1965) 978.Google Scholar
48. Keller, J B, Keller, H. B.: Reflection and transmission of sound by a spherical shell. J.A.S.A. 20 (1948) 310–313.Google Scholar
49. Kim, S. J., Chen, Y. M.: Scattering of acoustic waves by a penetrable sphere with statistically corrugated surface. J.A.S.A. 42 (1967) 1.
50. König, W.: Hydrodynamisch akustische Untersuchungen. Ann. Physik 42 (1891) 353–373, 549–563; 43 (1891) 43–60.
51. Krom, M. N.: Field fluctuations near the focus of a lens. Soy. Phys. Acoust. 5 (1959) 43.Google Scholar
52. Kuhl, W.: On the directivity of spherical microphones. Acustica 2 (1952) 226–231.Google Scholar
53. Lamb, H.: Hydrodynamics. Cambridge 1906.Google Scholar
54. Lax, M., Fischbach, H.: Absorption and scattering by spheres and cylinders. J.A.S.A. 20 (1948) 108–124.Google Scholar
55. Lense, J.: Kugelfunktionen. Leipzig: Akademische Verlagsgesellschaft. 1950.
56. Lindh, G.: Transmission of a transient spherical wave at a plane interface. Acustica 12 (1962) 108.
57. Lord, G.: Wave analysis of a Luneberg-Gutman fluid acoustic lens. J.A.S.A. 45 (1969) 885.Google Scholar
58. Macrobert, T. M.: Spherical harmonics, 2d rev. ed. New York, N. Y.: Dover Publication. 1948.Google Scholar
59. Magnus, W., Obertiettinger, F.: Formulas and theorems for the special functions of mathematical physics. New York, N. Y.: Chelsea Publishing. 1949.Google Scholar
60. Marnevskaya, L. A.: Diffraction of a plane scalar wave by two spheres. Sov. Phys. Acoust. 14 (1969) 356;Google Scholar
61. Marnevskaya, L. A.: Plane wave scattering by two acoustically-rigid spheres. Soy. Phys. Acoust. 15 (1970) 499.Google Scholar
62. Mcivor, I. K.: Axisymmetric response of a closed spherical shell to a nearly uniform radial impulse. J.A.S.A. 40 (1966) 1540.Google Scholar
63. Meyer, E., Just, P.: Messung der Gesamtenergie von Schallquellen. Z. techn. Physik 10 (1929) 309–316.Google Scholar
64. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik 25 (4) (1908) 377.
65. Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York, N. Y.: McGraw-Hill. 1961.Google Scholar
66. Morse, P. M., Ingard, K. U.: Theoretical acoustics. New York, N. Y.: McGraw-Hill. 1968.Google Scholar
67. Mortell, M. P.: Waves on a spherical shell. J.A.S.A. 45 (1969) 144.
68. Oestreicher, H. L.: Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics. J.A.S.A. 23 (1951) 707;
69. Oestreicher, H. L.: Representation of the field of an acoustic source as a series of multipole fields. J.A.S.A. 29 (1957) 1219.
70. Ott, H.: Zur Reflexion von Kugelwellen. Ann. Physik 4 (1949) 432–440.
71. Pol, B. Van Der, Breivmrer, H.: The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Philos. Mag. 24 (1937) 141–176, 825–864.Google Scholar
72. Prasad, G.: A treatise on spherical harmonics and the functions of Bessel andLamé, Part II ( Advanced). Benares City, India: Mahamandal Press. 1932.Google Scholar
73. Pritchard, R. L.: The directivity of spherical microphones. Acustica (1953) 359–362. RAYLEIGH, Lord: Theory of sound. London: Macmillan. 1929.Google Scholar
74. Robin, L.: Fonctions sphériques de Legendre et fonctions sphéroidales, Tome I, 11, 111. Paris, France: Gauthier-Villars. 1957.Google Scholar
75. Rudgers, A. J.: Acoustic pulses scattered by a rigid sphere immersed in a fluid. J.A.S.A. 45 (1969) 900.Google Scholar
76. Rzhevkin, S. N.: Energy movement in the field of a spherical sound radiator. J. techn.Physik (USSR) 19 (1949) 1380–1396;Google Scholar
77. Rzhevkin, S. N.: Energy movement in the field of a spherical sound radiator. Physics Abstr. 53 (1950) 3862.Google Scholar
78. Schenck, H. Improved integral formulation for acoustic radiation problems. J.A.S.A. 44 (1968) 41–48.Google Scholar
79. Schmidt, H.: Einführung in die Theorie der Wellengleichung. Leipzig: Barth. 1931.Google Scholar
80. Schwarz, L.: Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel. Akust. Z. 8 (1943) 91–117.Google Scholar
81. Senior, T. B. A. Control of the acoustic scattering characteristics of a rigid sphere by surface loading.J.A.S.A. 37 (1965) 464.Google Scholar
82. Sraposxnikov, N. N., Maxarov, G. I., Kozina, O. G.: Transient processes in the acoustic fields generated by a vibrating spherical segment. Sov. Phys. Acoust. 8 (1962) 53.Google Scholar
83. Sivuxxirr, D. V.: Diffraction of plane sound waves by a spherical cavity. Sov. Phys. Acoust. 1 (1957) 82.Google Scholar
84. Snow, C.: Hypergeometric and Legendre functions with applications to integral equations of potential theory. NBS Applied Math. Series 19 ( U.S. Government Printing Office, Washington, D.C., 1952 ).Google Scholar
85. Sonstegard, D. A.: Axisymmetric response of a closed spherical shell to a nearly uniform radial impulse. J.A.S.A. 40 (1966) 1540.Google Scholar
86. Stein, S.: Addition theorem for spherical wave functions. Quart. Appl. Math. 19 (1961) 15–24.
87. Stenzel, H.: Über die von einer starren Kugel hervorgerufene Störung des Schallfeldes. E.N.T. 15 (1938) 71 78;Google Scholar
89. Tartakovskii, B. D.: Diffraction structure of the image of a point produced by an acoustic lens. Sov. Phys. Acoust. 9 (1964) 383;
90. Tartakovskii, B. D.: An experimental study of the gain in acoustio focussing lenses. Sov. Phys. Acoust. 9 (1964) 272;
91. Tartakovskii, B. D.: Amplification factor of a solid acoustic lens with losses. J.A.S.A. 8 (1969) 176 (228).Google Scholar
92. Temby, A. C.: Sound diffraction in the vicinity of the human ear. Acustica 15 (1965) 219.Google Scholar
93. Thorne, R. C.: The asymptotic expansion of Legendre functions of large degree and order. Philos. Trans. Roy. Soc. London 249 (1957) 597–620.
94. Watson, G. N.: A treatise on the theory of Bessel functions, 2d ed. Cambridge, England: Cambridge Univ. Press. 1958.Google Scholar
95. West, W.: A point-source of sound. Post Office Electr. Engr. J. 20 (1927) 184–187.Google Scholar
96. Whittaker, E. T., Watson, G. N.: A course of modern analysis. Cambridge Univ. Press. (Am. Ed.) 1945, p. 330, example 3.Google Scholar
97. Wiener, F. M.: Sound diffraction by rigid spheres and circular cylinders. J.A.S.A. 19 (1947) 444–451.Google Scholar
98. Williams, W., Parks, N. G., Moran, D. A., Sherman, CH. H.: Acoustic radiation from finite cylinders. J.A.S.A. 36 (1964) 2316.Google Scholar
99. Zoller, K.: Die Bewegung einer starren Kugel infolge einer Druckwelle. Akust. Z. 8 (1943) 213 219;Google Scholar
100. Zoller, K.: Die Störung einer Druckfront durch eine starre, unbewegliche Kugel. Akust. Z. 8 (1943) 208–212.Google Scholar