Skip to main content

Plane Waves in Three Dimensions

  • Chapter
The Foundations of Acoustics
  • 1631 Accesses

Abstract

The three-dimensional wave equation in cartesian coordinates

$$ \begin{gathered}{\nabla ^2}p = \frac{1}{{{c^2}}}\frac{{{\partial ^2}p}}{{\partial {t^2}}} \hfill \\ {\nabla ^2} = \frac{{{\partial ^2}}}{{\partial {x^2}}} + \frac{{{\partial ^2}}}{{\partial {y^2}}} + \frac{{{\partial ^2}}}{{\partial {z^2}}} \hfill \\ \end{gathered} $$
(1)

is solved by plane progressive waves

$$ p = f(ct \pm \overrightarrow n \cdot \overrightarrow r ), $$
(2)

where \( \overrightarrow n \) is the direction of propagation, \( \vec{n}\cdot \vec{r} = {{n}_{x}}x + {{n}_{y}}y + {{n}_{z}}z \) and

$$ {n_{{x^2}}} + {n_{{y^2}}} + {n_{{z^2}}} = 1 $$
(3)

so that the wave equation is satisfied. The quantities n x ,ny, nz can be interpreted as the direction cosines of the angles between the direction of propagation and the x, y, and z axes, respectively:

$$ \begin{gathered} {n_x} = \cos \left( {n,x} \right) \hfill \\ {n_y} = \cos \left( {n,y} \right) \hfill \\ {n_z} = \cos \left( {n,z} \right). \hfill \\ \end{gathered} $$
(4)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bernade, A. H.: On the propagation of sound waves in a cylindrical conduit. J.A.S.A. 44 (1968) 616.

    Google Scholar 

  • Bladel, J. V.: Coupling through a small aperture in a waveguide. J.A.S.A. 47 (1970) 202.

    Google Scholar 

  • Daniels, F. B.: On the propagation of sound waves in a cylindrical conduit. J.A.S.A. 22 (1950) 563.

    Google Scholar 

  • Fay, R. D.: Waves in liquid-filled cylinders. J.A.S.A. 24 (1952) 459.

    Google Scholar 

  • Forristall, G. Z., Ingram, J. D.: Asymmetries in cylindrical waveguides. J.A.S.A. 46 (1969) 164.

    Google Scholar 

  • Hartig, H. E., Lambert, R. F.: Attentuation in a rectangular slotted tube of (1,0) transverse acoustic waves. J.A.S.A. 22 (1950) 42.

    Google Scholar 

  • Hoover, R. M., Laird, D. T., Miller, L. N.: Acoustic filter for waterfilled pipes. J.A.S.A. 22 (1950) 38.

    Google Scholar 

  • Ingard, U., Pridmore-Brown, D.: Propagation of sound in a duct with constrictions. J.A.S.A. 23 (1951) 689.

    Google Scholar 

  • Jacobi, W. J.: Propagation of sound waves along liquid cylinders. J.A.S.A. 21 (1949) 120.

    Google Scholar 

  • Junger, M. C.: Sound propagation in a fluid-filled tube with massive wall reactance. J.A.S.A. 28 (1956) 165.

    Google Scholar 

  • Karal, F. C. Analogous acoustical impedance for discontinuities and constrictions of circular cross section. J.A.S.A. 25 (1953) 327.

    MathSciNet  Google Scholar 

  • Lapin, A. D.: Sound propagation in a waveguide with side branches and volume resonators on the walls. Soy. Phys. Acoust. 7 (1961) 171;

    Google Scholar 

  • Lapin, A. D.: Sound propagation in inhomogeneous waveguides. Sov. Phys. Acoust. 13 (1967) 198–200;

    Google Scholar 

  • Lapin, A. D.: Sound propagation in a waveguide of variable cross section. Soy. Phys. Acoust. 14(1968)191–194.

    Google Scholar 

  • Levine, H.: On the theory of sound reflection in an open-ended cylindrical tube. J.A.S.A. 26 (1954) 200.

    Google Scholar 

  • Lin, T. C., Morgan, G. W.: Wave propagation through fluid contained in a cylindrical elastic shell. J.A.S.A. 28 (1956) 1165.

    Google Scholar 

  • Lippert, W. K. R.: The measurement of sound reflection and transmission at right-angled bends in rectangular tubes. Acustica 4 (1954) 313.

    Google Scholar 

  • Mawardi, O. K.: On the propagation of sound waves in narrow conduits. J.A.S.A. 21 (1949) 482.

    MathSciNet  Google Scholar 

  • Mebkulov, V. V.: Field structure in cylindrical waveguides with a complex cross section. Sov. Phys. Acoust. 5 (1960) 439.

    Google Scholar 

  • Miles, J. W.: On the change of cross section and bifurcation of a cylindrical tube. J.A.S.A. 22 (1950) 59.

    Google Scholar 

  • Molloy, C. T.: Lined tube as an element of acoustic circuits. J.A.S.A. 21 (1949) 413.

    Google Scholar 

  • Shaw, E. A. G.: Acoustic wave guide. I. An apparatus for the measurement of acoustic impedance using plane waves and higher order mode waves in tubes. J.A.S.A. 25 (1953) 224.

    Google Scholar 

  • Stewart, G. W., Lindsay, R. B.: Acoustics. New York, N. Y.: D. van Nostrand. 1930.

    Google Scholar 

  • Tanner, R.: Etude expérimentale de divers types de tuyaux sonores bouchés, du point de vue de la pureté de timbre. Acustica 8 (1958) 226.

    Google Scholar 

  • Wood, J. K., Thurston, G. B.: Acoustic impedance of rectangular tubes. J.A.S.A. 25 (1953) 858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Plane Waves in Three Dimensions. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics