The One-Dimensional Wave Equation and Its Solutions

  • Eugen Skudrzyk


At a sufficiently great distance from the sound source, the wave fronts become plane. The solutions of the wave equation then depend only on the coordinate x in the direction of propagation, \( \left( \frac{\partial \Phi }{\partial y}=\frac{\partial \Phi }{\partial z}=0 \right) \) and the wave equation reduces to
$$ \frac{{{\partial }^{2}}\Phi }{\partial {{x}^{2}}}=\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}\Phi }{\partial {{t}^{2}}} $$


Wave Equation Particle Velocity Sound Pressure Order Quantity Natural Vibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreev, N. N.: Concerning second order quantities in acoustics. Soy. Phys. Acoust. 1 (1955) 1–11.Google Scholar
  2. Arons, A. B., Yennie, D. R.: Phase distortion of acoustic pulses obliquely reflected from a medium of higher sound velocity J.A.S.A. 22 (1950) 231.Google Scholar
  3. Beranek, L. L.: Acoustics. New York, N. Y.: McGraw-Hill. 1954.Google Scholar
  4. Chernov, L. A.: Wave propagation in a random medium. New York, N. Y.: McGraw-Hill. 1960.Google Scholar
  5. Heymann, O.: Die Differentialgleichungen des Schallfeldes. Akust. Z. 2 (1937) 193–202.MATHGoogle Scholar
  6. Hunter, J. L.: Acoustics. Englewood Cliffs, N. J.: Prentice-Hall. 1957.Google Scholar
  7. Karnovskii, M. I.: Interaction acoustical impedance of spherical radiators and resonators. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS,Vol. XXXII, No. 1, 1941.Google Scholar
  8. Kinsler, L. E., Frey, R.: Fundamentals of acoustics. New York, N. Y.: Wiley. 1962.Google Scholar
  9. Kuml, W., Oberst, H., Skudrzyk, E. Impulsverfahren zur Messung der Reflexion von Wasserschallabsorbern in Rohren. Acustica 3 (1953) 421–433.Google Scholar
  10. Lamb, H.: Dynamical theory of sound, 2. Aufl., S. 122–125. London: Arnold. 1925; Hydrodynamics. Cambridge 1906, 1932.Google Scholar
  11. Mclachlan, N. W.: Loudspeakers. Oxford: Clarendon Press. 1934.Google Scholar
  12. Miller, N. B.: Reflections from gradual transition sound absorbers 30 (1958) 967.Google Scholar
  13. Morse, P. M.: Vibration and sound. New York, Toronto, London: McGraw-Hill. 1948.Google Scholar
  14. Morse, P. M., Ingard, U.: Linear acoustic theory, p. 1 127 in Handbook d. Physik,Vol. XI/7. Berlin—Göttingen—Heidelberg: Springer. 1962;Google Scholar
  15. Morse, P. M., Theoretical acoustics.New York, N. Y.: McGraw-Hill 1968.Google Scholar
  16. Rayleigh, Lord: The theory of sound, Vol. I. London: Macmillan. 1894.MATHGoogle Scholar
  17. Samuels, J. C.: Reflection and refraction of elastic waves at the interface of two moving semi-infinite plane media. J.A.S.A. 31 (1959) 1076.Google Scholar
  18. Schmidt, H.: Einführung in die Theorie der Wellengleichung. Leipzig: J. A. Barth. 1931.Google Scholar
  19. Skudrzyk, E. J.: The natural frequencies of rooms with rough walls and the diffuse sound reflections. Akust. Z. 4 (1939) 172–186;Google Scholar
  20. Skudrzyk, E. J.: Die Grundlagen der Akustik. Wien: Springer. 1954.Google Scholar
  21. Stephens, R. W. B., Bate, A. E.: Wave motion and sound. London: Arnold. 1950.Google Scholar
  22. Stewart, G. W., Lindsay, R. B.: Acoustics. New York, N. Y.: D. van Nostrand. 1930.Google Scholar
  23. Tatarski, V. I.: Wave propagation in a turbulent medium. New York, N. Y.: McGraw-Hill. 1961.Google Scholar
  24. Waterhouse, R.: Sampling statistcis for an acoustic mode. J.A.S.A. 47 (1970) 961.Google Scholar
  25. Weinstein, M. S.: On the failure of plane wave theory to predict the reflection of a narrow ultrasonic beam. J.A.S.A. 24 (1952) 284.Google Scholar
  26. Wien-Harms: Handbuch der Experimentalphysik, Bd. XVII, 1. Teil, MARTIN, H.: Schwingungen kontinuierlicher Systeme und Wellenvorgänge, Bd. XVII, 2. Teil, Technische Akustik I, Bd. XVII, 3. Teil, Technische Akustik II. Leipzig: Akadem. Verlagsges. 1934.Google Scholar
  27. Wood, A. B.: A textbook of sound. London: Bell. 1930.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations