Probability Theory, Statistics, and Noise

  • Eugen Skudrzyk


Many of the phenomena that occur in acoustics are complex, and detailed descriptions cannot be derived or would be of no practical value. In such cases, probability theory furnishes means by which details can be eliminated. Amplifier noise, turbulence, flow noise, sound scattering at temperature inhomogeneities in the sea, scattering at the sea surface, scattering of supersonic waves in crystalline substances are examples where probability theory and statistics have proved to be very useful.


Characteristic Function Probability Density Function Central Limit Theorem Noise Current Wave Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arens, R.: Complex processes for envelopes of normal noise. I.R. E. Trans. IT-3 (1957) 204–207.Google Scholar
  2. Baum, R. F.: The correlation function of smoothly limited Gaussian noise. I.R. E. Trans. IT-3 (1957) 193–197.Google Scholar
  3. Bartlett, M. S.: An introduction to stochastic processes. New York, N. Y.: Cambridge University Press. 1955.Google Scholar
  4. Bendat, J. S.: Principles and applications of random noise theory. New York, N. Y.: Wiley. 1958;Google Scholar
  5. Bendat, J. S.: Interpretation and application of statistical analysis for random physical phenomena. I.R.E. Trans. BME-9, January 1962;Google Scholar
  6. Bendat, J. S.: Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic failure. National Aeronautics and Space Administration, Washington, D.C., NASA CR-33, April 1964.Google Scholar
  7. Bendat, J S., Enochson, L. D., Klein, G. H., Piersol, A. G.: Advanced concepts of stochastic processes and statistics for flight vehicle vibration estimation and measurement. ASD TDR 62–973, Aeronautical Systems Division, AFSC, Wright-Patterson AFB, Ohio, December 1962 (AD 297 031).Google Scholar
  8. Bendat, J. S., Piersol, A. G.: Measurement and analysis of random data. New York, N. Y.: Wiley. 1958.Google Scholar
  9. Beranek, W.: Acoustic measurements. New York, N. Y.: Wiley. 1949.Google Scholar
  10. Blackman, R. B., Tukey, J. W.: The measurement of power spectra. New York, N. Y.: Dover Publication. 1958.Google Scholar
  11. Bose, A. G., Pezaris, S. D.: A theorem concerning noise figures. I.R.E. Convention Record, Part 8 (1955) 35–41.Google Scholar
  12. Bunimovich, V. I.: The fluctuation process as a vibration with random amplitude and phase. J. Tech. Phys. U.S.S.R. 19 (1949) 1231–1259.Google Scholar
  13. Carnap, R.: Logical foundations of probability. Chicago: University of Chicago Press. 1950.MATHGoogle Scholar
  14. Chessin, P. L.: A bibliography on noise. I.R. E. Trans. IT-1 (2): 15–31, 1955.Google Scholar
  15. Cramer, H.: Mathematical methods of statistics. Princeton, N. J.: Princeton University Press. 1946.Google Scholar
  16. Crandall, S. H..: Zero-crossings, peaks, and other statistical measures of random responses. J.A.S.A. 35 (1963) 1693;Google Scholar
  17. Crandall, S. H..: Distribution of maxima in the response of an oscillator to random excitation. J.A.S.A. 47 (1970) 838.Google Scholar
  18. Davenport, W. B., Root, W. L.: Random signals and noise. New York, N. Y.: McGraw-Hill 1958.Google Scholar
  19. Doos, J. L.: Stochastic processes. New York, N. Y.: Wiley. 1953.Google Scholar
  20. Dwight, H. B.: Tables of integrals, rev. ed. New York, N. Y.: Macmillan. 1947.Google Scholar
  21. Enochson, L. D., Goodman, N. R.: Gaussian approximation to the distribution of sample coherence. AFFDL TR 65 57, Research and Technology Division, AFSC,Wright-Patterson AFB, Ohio, February 1965.Google Scholar
  22. Feller, W.: An introduction to probability theory and its applications, Vol. I. New York, N. Y.: Wiley. 1957.MATHGoogle Scholar
  23. Fry, T. C.: Probability and its engineering uses. Princeton, N. J.: Van Nostrand. 1928.Google Scholar
  24. Gnedenko, B. V.: The theory of probability, B. D. Seckler, trans. New York, N. Y.: Chelsea Publishing. 1962.Google Scholar
  25. Gnedenko, B. V., Kolmogorov, A. N.: Limit distributions for sums of independent random variables. Cambridge, Mass.: Addison-Wesley. 1954.MATHGoogle Scholar
  26. Goodman, N. R.: On the joint estimation of the spectra, co-spectrum and quadrature spectrum of a two-dimensional stationary Gaussian process. Scientific Paper No. 10, Engineering Statistics Laboratory, New York Univ. New York 1957.Google Scholar
  27. Graybill, F. A.: An introduction to linear statistical models. New York, N. Y.:McGraw-Hill. 1961.Google Scholar
  28. Grenander, U.: Stochastic processes and statistical inference. Arkiv fur Matematik 1 (17) (1950) 195–277.MathSciNetADSCrossRefGoogle Scholar
  29. Green, P. E., Jr.: A bibliography of soviet literature on noise, correlation, and information theory. I.R. E. Trans. IT-2 (2): 91–92, June 1956.Google Scholar
  30. Hajek, J.: On linear statistical problems in stochastic processes. Czech. Math. J. 12 (87), 404–444, 1962.MathSciNetGoogle Scholar
  31. Haus, H. A., Adler, R. B.: Invariants of linear noisy networks. I.R.E. Convention Record, Part 2 (1956) 53–67.Google Scholar
  32. Jeffreys, H.: Theory of probability, 2d ed. New York, N. Y.: Oxford University Press. 1948.Google Scholar
  33. Kac, M., Siegert, A. J. F.: An explicit representation of a stationary Gaussian process. Ann. Math. Stat. 18, No. 3, 438–442.Google Scholar
  34. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae, Ser. A. I. Math. Physics, No. 37, 79 pp.Google Scholar
  35. Kendall, M. G., Stuart, A.: The advanced theory of statistics, Vol. 3, eh. 49,Spectrum Theory, pp. 454–471. New York, N. Y.: Hafner Publishing Co.Google Scholar
  36. Krinchin, A. I.: I. Mathematical foundations of statistical mechanics. New York,N. Y.: Dover Publication. 1949.Google Scholar
  37. Kolmogorov, A. N.: I. Foundations of the theory of probability. New York, N. Y.: Chelsea Publishing. 1950.Google Scholar
  38. Landau, L., Ltfshttz, E.: Statistical physics, E. and R F Peierls, trans. Reading, Mass.: Addison-Wesley Publishing Co. 1969.Google Scholar
  39. Laning, J. H., Jr., Battin, R. H.: Random processes in automatic control. New York, N. Y.: McGraw-Hill. 1956.Google Scholar
  40. Lee, Y. W.: Statistical theory of communication. New York, N. Y.: Wiley. 1964.Google Scholar
  41. Lee, Y. W., Stutt, Ch. A.: Statistical prediction of noise. Proc. National Electronics Conference, 5: 342 365. Chicago 1949.Google Scholar
  42. Levenbach, H.: The zero-crossing problem. Res. Rep. No. 63 64, Electrical Engineering Department, Queens Univ., Kingston, September 1963.Google Scholar
  43. Loeve, M.: Probability theory. Princeton, N. J.: Van Nostrand. 1960.Google Scholar
  44. Macdonald, D. K. C.: Some statistical properties of random noise. Proc. Cambridge Philosophical Soc. 45 (1949) 368.MathSciNetADSMATHCrossRefGoogle Scholar
  45. Mises, R.: Wahrscheinlichkeitsrechnung und ihre Anwendungen in der Statistik und theoretischen Physik. New York, 235 West 108th Str., Mary S. Rosenberg, Book- Seller and Importer, 1943.Google Scholar
  46. Moon, A. Mcf.: Introduction to the theory of statistics. New York, N. Y.: McGraw-Hill 1950.Google Scholar
  47. National Bureau of Standards: Tables of normal probability functions, Table 23. NBS Applied Math. Series. Washington 1953.Google Scholar
  48. Neyman, J., Pearson, E. S.: On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrica 20 A (1928) 175, 263;Google Scholar
  49. Neyman, J., Pearson, E. S.: On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. Royal Soc. London, A 231 (1933) 289–337.ADSCrossRefGoogle Scholar
  50. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32 (1928) 110–113.ADSCrossRefGoogle Scholar
  51. Papoulis, A.: Probability, random variables, and stochastic processes. New York, N. Y.: McGraw-Hill.Google Scholar
  52. Piersol, A. G.: The measurement and interpretation of ordinary power spectra for vibration problems. National Aeronautics and Space Administration, Washington D.C., NASA CR-90, September 1964.Google Scholar
  53. Rayleigh, Lord: Theory of sound, Vol. 1. New York, Dover, 1945.MATHGoogle Scholar
  54. Reed, I. S.: On a moment theorem for complex Gaussian processes. I.R. E. Trans. IT-8 (1962) 194–195.Google Scholar
  55. Rice, S. O.: Mathematical analysis of random noise. Selected Papers on Noise and Stochastic Processes, ed. by N. WAX. New York, N. Y.: Dover Publication. 1954.Google Scholar
  56. Siebert, W. M.: The description of random process, Chapter 2, p. 33 in Random Vibrations, ed. by ST. H. Crandall, The Massachusetts Institute of Technology and John Wiley and Sons, Inc., New York, 1958.Google Scholar
  57. Tick, L. J.: Conditional spectra, linear systems, and coherency, Chapter 13. Time Series Analysis, M. Rosenblatt(Ed.). New York, N. Y.: Wiley. 1963.Google Scholar
  58. Uspensky, J. V.: I. Introduction to mathematical probability. New York, N. Y.:McGraw-Hill. 1937.Google Scholar
  59. Wax, N.: Selected papers on noise and stochastic processes. New York, N. Y.: Dover Publication. 1954.Google Scholar
  60. Williams, F. C.: Thermal fluctuations in complex networks. Jour. Inst. Electr. Eng. (London) 81 (1937) 751–760.Google Scholar
  61. Winder, A. A., Loda, CH. J.: Introduction to acoustical space-time information processing. ONR Report ACR-63, 1963.Google Scholar
  62. Woodward, P. M.: A mathematical description of random noise. I.R.E. Journal, October 1948.Google Scholar
  63. Yaglom, A. M.: An introduction to the theory of stationary random functions. Englewood Cliffs, N. J.: Prentice-Hall. 1962.Google Scholar
  64. Youla, D.: The solution of a homogeneous Wiener—Hopf integral equation occurring in the expansion of second-order stationary random functions. I.R. E. Trans. IT-3 (1957) 187–193.Google Scholar
  65. Ziel, A. Van Der: Noise. Englewood Cliffs, N. J.: Prentice-Hall 1954.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations