Determination of the Neutron Form Factors Derived from Quasielastic Electron-Deuteron-Scattering

  • Paul Urban


In describing the scattering of ultrarelativistic electrons on free neutrons we may of course again apply the Rosenbluth formula (2,28, 2,30). We merely have to replace the proton form factors by the corresponding form factors for the charge- and moment-distribution of the neutron for we should expect the neutron also to be spatially extended. (Approximately a meson Compton-wavelength.) This extension is associated with the finite size of a cloud of virtual mesons centered around the neutron. As will be described later, this interpretation leads to a curious value for the mean charge radius of the neutron when considering the low-energy scattering of neutrons on the electrons surrounding a nucleus. But we find at least a deviation from the point structure with respect to the magnetic moment. This may be shown by comparing the e-n interaction in the electron disintegration of the deuteron with the corresponding e-p scattering [1]. If we assume a point-neutron and take into account the structure of the proton the theory will be incompatible with the experiment. We only get rid of this discrepancy by choosing a suitable magnetic form factor for the neutron. In section II. 3 we have demonstrated that the mean squared radii for the charge and the magnetic moment arise from the gradient of the form factors in the limit q2 →0. In case of a proton we obtain these quantities by extrapolating the electron cross-section. Thus the values are not particularly accurate.


Form Factor Double Differential Cross Section Deuteron Wave Function Free Neutron Direct Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Hofstadter, F. Bumiller, M. R. Yearian, Rev. Mod. Phys. 30, 482 (1958).CrossRefADSGoogle Scholar
  2. [2]
    S.D. Drell, F. Zachariasen, Electromagnetic Structure of Nucleons, Oxford: University Press (1961).MATHGoogle Scholar
  3. [3]
    M. Gourdin, Nuovo Cim. 28, 533 (1963).CrossRefGoogle Scholar
  4. [4]
    F. Gross, Phys. Rev. 134, B 405 (1964), 140, 410 (1964).CrossRefADSGoogle Scholar
  5. [5]
    F. Gross, Phys. Rev. 142, 1025 (1966).CrossRefADSGoogle Scholar
  6. [6]
    R.M. Renard, J. Tran Than Van, M. Le Bellac, Nuovo Cim. 38, 565 (1965).CrossRefGoogle Scholar
  7. [7]
    J. McGee, Thesis, Yale University (1965).Google Scholar
  8. [8]
    D. Braess, G. Kramer, Proc. of the Int. Symposium on Electron and Photon Interactions at High Energies, Hamburg (1965), Vol. II, p. 60.Google Scholar
  9. [9]
    L. Durand, Phys.Rev. 123, 1393 (1961).CrossRefADSGoogle Scholar
  10. [10]
    K. Hölzl, G. Saller, P. Urban, Acta Phys. Austr. 19, 168 (1964).Google Scholar
  11. [11]
    V.Z. Jancus, Phys.Rev. 102, 1586 (1956).CrossRefADSGoogle Scholar
  12. [12]
    L. Durand, Phys.Rev. 115, 1020 (1959).CrossRefADSGoogle Scholar
  13. [13]
    K. Hölzl, Thesis, Univ. Graz (1963).Google Scholar
  14. [14]
    L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950).CrossRefADSGoogle Scholar
  15. [15]
    K.M. McVoy, L. van Hove, Phys.Rev. 125, 1034 (1962).CrossRefADSGoogle Scholar
  16. [16]
    K. Hölzl, G. Saller, P. Urban, Phys. Lett. 10, 120 (1964).CrossRefADSGoogle Scholar
  17. [17]
    P. Breitenlohner, Proc. of the Int. Symposium on Electron and Photon Interactions at High Energies, Hamburg (1965), Vol. II, p. 78.Google Scholar
  18. [18]
    P. Breitenlohner, Acta Phys.Austr. 22, 217 (1966).Google Scholar
  19. [19]
    P. Kocevar, Z. Phys. 209 457 (1968)ADSGoogle Scholar
  20. [20]
    P. Breitenlohner, K. Hölzl, P. Kocevar, Proc. of the Int. Symposium on Electron and Photon Interactions at High Energies, Hamburg (1965), Vol. II, p. 73.Google Scholar
  21. [21]
    N.K. Glendenning, G. Kramer, Phys. Rev. Lett. 7, 471 (1961).CrossRefADSGoogle Scholar
  22. [22]
    M.H. Hull, K.E. Lassila, H.M. Ruppel, F.A. McDonald, G. Breit, Phys.Rev. 122, 1606 (1961).CrossRefADSGoogle Scholar
  23. [23]
    E.B. Hughes, T.A. Griffy, M.R. Yearian, R. Hofstadter, Phys.Rev. 139, B458 (1965).CrossRefADSGoogle Scholar
  24. [24]
    J. Nuttall, M. L. Whippman, Phys. Rev. 130, 2495 (1963).CrossRefADSGoogle Scholar
  25. [25]
    J.G. Gammel, R.M. Thaler, Phys.Rev. 107, 291, 1337 (1957).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1970

Authors and Affiliations

  • Paul Urban
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of GrazGrazAustria

Personalised recommendations