On ‘Thermo-Rheologically Simple’ Solids

  • M. J. Crochet
  • P. M. Naghdi
Part of the IUTAM Symposia book series (IUTAM)


Starting with the results for a non-isothermal finite linear theory of viscoelasticity, a systematic derivation of a linearized theory with infinitesimal deformation is presented for ‘thermo-rheologically simple’ solids. A comparison of the resulting constitutive equations and the internal dissipation with those given previously is included.


Constitutive Equation Temperature History Difference History Fading Memory Infinitesimal Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Coleman, B. D.: Thermodynamics of Materials with Memory. Arch. Rati Mech. Anal. 17, 1–46 (1964).Google Scholar
  2. [2]
    Coleman, B. D.: On Thermodynamics, Strain Impulses and Viscoelasticity. Arch. Rati Mech. Anal. 17, 230–254 (1964).MATHGoogle Scholar
  3. [3]
    Coleman, B. D., and W. Noll: Foundations of Linear Viscoelasticity. Rev. Mod. Phys. 88, 239–249 (1961).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Christensen, R. M., and P. M. Naghdi: Linear Non-isothermal Viscoelastic Solids. Acta Mech. 3, 1–12 (1967).MATHCrossRefGoogle Scholar
  5. [5]
    Crochet, M. J., and P. M. Naghdi: A Class of Simple Solids with Fading Memory. Int. J. Engng. Sci. (1969). To appear.Google Scholar
  6. [6]
    Hunter, S. C.: Tentative Equations for the Propagation of Stress, Strain and Temperature Fields in Viscoelastic Solids. J. Mech. Phys. Solids 9, 39–51 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Morland, L. W., and E. H. Lee: Stress Analysis for Linear Viscoelastic Materials with Temperature Variation. Trans. Soc. Rheology 4, 233–263 9 1960 ).Google Scholar
  8. [8]
    Muki, R., and E. Sternberg: On Transient Thermal Stresses in Viscoelastic Materials with Temperature-dependent Properties. J. Appl. Mech. 28, 193–207 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    Payne, A. R.: Temperature-Frequency Relationships of Dielectric and Mechanical Properties of Polymers. The Rheology of Elastomers (edited by P. Mason and N. Wookey), pp. 86–110. London: Pergamon Press. 1958.Google Scholar
  10. [10]
    Schwarzl, F., and A. J. Staverman: Time-temperature Dependence of Linear Viscoelastic Behavior. J. Appl. Phys. 28, 838–843 (1952).ADSCrossRefGoogle Scholar
  11. [11]
    Staverman, A. J., and F. Schwarzl: Linear Deformation Behavior of High Polymers. The Physics of High Polymers, Vol. 4, Chapter 1. Berlin-Göttingen-Heidelberg: Springer. 1956.Google Scholar
  12. [12]
    Sternberg, E.: On the Analysis of Thermal Stresses in Viscoelastic Solids. Proc. 3rd Symp. on Naval Structural Mechanics, pp. 348–382 (1964).Google Scholar
  13. [13]
    Tobolsky, A. V.: Properties and Structure of Polymers. New York: John Wiley & Sons. 1962.Google Scholar
  14. [14]
    Truesdell, C., and W. Noll: The Non-Linear Field Theories of Mechanics. Encyclopedia of Physics, Vol. III/3 (edited by S. Flügge ). Berlin-Heidelberg-New York: Springer. 1965.Google Scholar

Copyright information

© Springer-Verlag/Wien 1970

Authors and Affiliations

  • M. J. Crochet
    • 1
  • P. M. Naghdi
    • 2
  1. 1.LouvainBelgium
  2. 2.BerkeleyUSA

Personalised recommendations