Skip to main content

On the Influence of Vibrational Heating on the Fracture Propagation in Polymeric Materials

  • Conference paper
Thermoinelasticity

Part of the book series: IUTAM Symposia ((IUTAM))

Abstract

According to the basic concept of S. N. Zhurkov [1, 2], the fracture of solids is a process which takes place in time under any stress and is controlled by certain kinetics due to thermal fluctuations and is strongly affected by temperature and stress. Let us denote the average sample lifetime at temperature T and tensile stress σ by t 0 = t 0 (σ, T). For the evaluation of the time of failure t *0 for the case of an alternating stress σ (t), Bailey’s rule of damage summation will be used [3], i.e.

$$\int\limits_0^{t_0^*} {\frac{{dt}}{{{t_0}(\sigma (t),T)}}} = 1$$
((0.1))

following from the assumption that each moment the average rate of the damage process is the same as if the acting stress were constant in time (quasi-stationarity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhurkov, S. N., and B. N. Narzullaev: The Time-dependence of Solids Strength. Zhurn. Tekhn. Fiz. 28, No. 10, 167 (1953). [in Russian]

    Google Scholar 

  2. Zhurkov, S. N.: Kinetic Concept of the Strength of Solids. Intern. J. Fracture Mech. 1, No. 4 (1965).

    Google Scholar 

  3. Bailey, J.: Attempt to Correlate Some Tensile Strength Measurements on Glass. Glass Industry 20, No. 1–4 (1939).

    Google Scholar 

  4. Regel, V. R., and A. M. Leksovsky: A Study of Fatigue within the Framework of the Kinetic Concept of Fracture. Intern. J. Fracture Mech. 3, No. 2, 99 (1967).

    Google Scholar 

  5. Bartenev, G. M., B. I. Panshin, I. V. Raztjmovskaya and G. N. Finogenov: On Long Time Cyclic Strength of Organic Glass. Izv. AN SSSR, OTN, Mech. i mash. No. 6 (1960). [in Russian]

    Google Scholar 

  6. Bland, D. R.: The Theory of Linear Viscoelasticity. London: Pergamon Press. 1960.

    MATH  Google Scholar 

  7. Ferry, J.: Viscoelastic Properties of Polymers. New York: J. Wiley. 1965.

    Google Scholar 

  8. Entov, V. M., and R. L. Salganik: On the Cracks in Viscoelastic Solids. Inzh. Zhurn., Mekhanika Tverdogo Tela No. 2 (1968). [in Russian]

    Google Scholar 

  9. Sneddon, I. N.: The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid. Proc. Roy. Soc., A 187, 229–260 (1946).

    Google Scholar 

  10. Williams, M. L.: On the Stress Distribution at the Base of Stationary Crack. J. Appl. Mech. 24, 109–114 (1957).

    MathSciNet  MATH  Google Scholar 

  11. Irwin, G. R.: Fracture. In: Handbuch der Physik (S. Flugge, ed.), Bd. VI. Berlin-Gottingen-Heidelberg: Springer, 551–590 (1958).

    Google Scholar 

  12. Barenblatt, G. I.: The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Appl. Mechanics, 7. New York: Academic Press. 1962.

    Google Scholar 

  13. Ryzhik, I. M., and I. S. Gradstein: Tables of Integrals, Sums, Series and Products. Gostekhisdat, 1951. [in Russian]

    Google Scholar 

  14. Barenblatt, G. I.: The Effects of Small Vibrations at the Deformation of Polymers. PMM 30, 1 (1966).

    Google Scholar 

  15. Barenblatt, G. I., V. M. Entov and R. L. Salganik: On the Kinetics of the Crack Propagation. General Concepts. The Nearly Equilibrium Cracks. Inzh. Zhurn., Mekhanika Tverdogo Tela, No. 5 (1966). [in Russian]

    Google Scholar 

  16. Barexblatt, G. I., V. M. Entov, and R. L. Salganik: On the Kinetics of the Crack Propagation. Fluctuational Failure. Inzh. Zhurn., Mekhanika Tverdogo Tela No. 1 (1967). [in Russian]

    Google Scholar 

  17. Frank-Kamenetskij, D. A.: Diffusion and Heat Transfer in the Chemical Kinetics. Izd. Nauka, 1967. [in Russian]

    Google Scholar 

  18. Berry, J. P.: Fracture Processes in Polymeric Materials, II. Tensile Strength of Polysterene. J. Polymer Sci. 50, 313–321 (1961).

    Article  ADS  Google Scholar 

  19. Berry, J. P.: Fracture Processes in Polymeric Materials, IV. Dependence of the Fracture Surface Energy on Temperature and Molecular Structure. J. Polymer Sci. Part A 1, 993–1003 (1961).

    Google Scholar 

  20. Takayanagi, M.: Viscoelastic Properties of Crystalline Polymers. Mem. Fac. Engng Kyushu Univ., 23, No. 1 (1963).

    Google Scholar 

  21. Regel, V. R., and A. M. Leksovsky: Time Dependence of Strength at Static and Cyclic Loads. Fiz. Tv. Tela 4, No. 4 (1962). [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag/Wien

About this paper

Cite this paper

Barenblatt, G.I., Entov, V.M., Salganik, R.L. (1970). On the Influence of Vibrational Heating on the Fracture Propagation in Polymeric Materials. In: Boley, B.A. (eds) Thermoinelasticity. IUTAM Symposia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8244-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8244-4_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8246-8

  • Online ISBN: 978-3-7091-8244-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics