Skip to main content

The Transport of Auxin

  • Chapter
Book cover Pflanzenernährung

Part of the book series: Handbuch der Pflanzenernährung und Düngung ((1740,volume 1 / 1))

  • 223 Accesses

Abstract

It has already been shown that growth substances such as 2,4-D travel in the phloem when applied to leaves. Huber et al. (1937) also reported the presence of natural auxin in the phloem exudate of various trees in July and August. Work in the 1930s produced the basic data on auxin transport and are well dealt with in Went and Thimann’s book “Phytohormones“ (1937). They may be summarised as follows. Transport of natural auxin (in most cases indole--3-acetic acid, IAA) is polar in a basipetal direction from the shoot tip (monocotyledons), the young leaves (dicotyledons) and the root tip. The velocity of transport generally ranges from 9–20 mm/hr. Transport is active insofar as it is inhibited by an atmosphere of nitrogen, and auxin may be accumulated against a concentration gradient. Ether and similar narcotics destroy the polarity, confining movement to passive diffusion. In experiments in which large, unphysiological concentrations of auxin are applied to plants, auxin may penetrate the xylem and travel acropetally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  • Andel, O. M. Van: The influence of salts on the exudation of tomato plants. Acta Bot. Neerl. 2, 445–521 (1953).

    Google Scholar 

  • Andel, O. M. Van, W. H. Arisz and R. J. Helder: Influence of light and sugar on growth and salt intake by maize. Proc. K. Nederl. Akad. Wetensch. Amsterdam 53, 159–171 (1950).

    Google Scholar 

  • Anderssen, F. G.: Some seasonal changes in the tracheal sap of pear and apricot trees. Plant Physiol. 4, 459–476 (1929).

    CAS  PubMed  Google Scholar 

  • Ansimov, A. A.: The translocation of assimilates in wheat seedlings in connection with root nutrition conditions. Fiziol. Rasteny 6, 138–143 (1959).

    Google Scholar 

  • Arisz, W. H.: Contribution to a theory on the absorption of salts by the plant and their transport in parenchymatous tissue. Proc. Roy. Acad. Amsterdam 48, 420–446 (1945).

    CAS  Google Scholar 

  • Arisz, W. H.: Significance of the symplasm theory for transport in the root. Protoplasma 46, 5–62 (1956).

    Google Scholar 

  • Arisz, W. H.: Influence of inhibitors on the uptake and transport of chloride ions in leaves of Vallisneria spiralis. Acta Bot. Neerl. 7, 1–32 (1958).

    CAS  Google Scholar 

  • Arisz, W. H., and H.H. Sol: Influence of light and sucrose on the uptake and transport of chloride in Vallisneria leaves. Acta Bot. Neerl. 5, 218–246 (1956).

    CAS  Google Scholar 

  • Aranoff, S.: Translocation in soybean leaves. II. Plant Physiol. 30, 184–185 (1955).

    Google Scholar 

  • Barinov, G. V.: Comparative rates of entry of P32 and Ca45 and their mobility in plants following foliar application. DAN USSR 125, 227–228 (1959).

    CAS  Google Scholar 

  • Barinov, G. V., and E. I. Ratner: Some features of the assimilation of substances through the leaves after foliar application. Fiziol. Rasteny 6, 324–332 (1959).

    CAS  Google Scholar 

  • Barrier, G. E., and W. E. Loomis: Absorption and translocation of 2–4 dichlorophenoxyacetic acid and P32 by leaves. Plant Physiol. 32, 225–231 (1957).

    CAS  PubMed  Google Scholar 

  • Bauer, L.: Über den Wanderungsweg fluoreszierender Farbstoffe in den Siebröhren. Planta 37, 221–243 (1949).

    CAS  Google Scholar 

  • Bauer, L.: Zur Frage der Stoffbewegungen in der Pflanze mit besonderer Berücksichtigung der Wanderung von Fluorochromen. Planta 42, 367–451 (1953).

    CAS  Google Scholar 

  • Bennett, C. W.: Virus disease of raspberries. Mich. Agr. Exper. Sta. Tech. Bull. 80, (1927).

    Google Scholar 

  • Bennett, C. W.: Further observations and experiments with mosaic diseases of raspberries, blackberries and dewberries. Mich. Agr. Exper. Sta. Tech. Bull. 125 (1932).

    Google Scholar 

  • Bennett, C. W.: Plant-tissue relations of the curly top virus. J. Agr. Res. 45, 665–701 (1934).

    Google Scholar 

  • Bennett, C. W.: Correlation between movement of the curly top virus and translocation of food in tobacco and sugar beet. J. Agr. Res. 48, 479–502 (1937).

    Google Scholar 

  • Bennett, C. W.: Studies of dodder transmission of plant viruses. Phytopathology 34, 905–932 (1944).

    Google Scholar 

  • Biddulph, O.: Diurnal migration of injected radiophosphorus from bean leaves. Amer. J. Bot. 28, 348–352 (1941).

    CAS  Google Scholar 

  • Biddulph, O.: The translocation of minerals in plants. In: Mineral nutrition of plants. Ed. E. Truog. University of Wisconsin Press, 1951.

    Google Scholar 

  • Biddulph, O., S. Biddulph, R. Cory and H. Koontz: Circulation patterns for phosphorus, sulphur and calcium in the bean plant. Plant Physiol. 33, 293–300 (1958).

    CAS  PubMed  Google Scholar 

  • Biddulph, O., and R. Cory: An analysis of translocation in the bean plant using THO, P32 and C14. Plant Physiol. 32, 608–619 (1957).

    CAS  PubMed  Google Scholar 

  • Biddulph, O., R. Cory and S. F. Biddulph: Translocation of calcium in the bean plant. Plant Physiol. 31, 512–519 (1959).

    Google Scholar 

  • Biddulph, O., and J. Markle: Translocation of radiophosphorus in the phloem of the cotton plant. Amer. J. Bot. 31, 65–70 (1944).

    CAS  Google Scholar 

  • Biddulph, O., and C. G. Woodbridge: The uptake of phosphorus by bean plants with particular reference to the effects of iron. Plant Physiol. 27, 431–444 (1952).

    CAS  PubMed  Google Scholar 

  • Biddulph, S. F.: Visual indications of S35 and P32 translocation in the phloem. Amer. J. Bot. 43, 143–148 (1956).

    CAS  Google Scholar 

  • Birch-Hirschfeld, L.: Untersuchungen über die Ausbreitungsgeschwindigkeit gelöster Stoffe in der Pflanze. Jahrb. wiss. Bot. 59, 171–262 (1919).

    Google Scholar 

  • Bledsoe, R. W., C. L. Comar and H.C. Harris: Absorption of radioactive calcium in the peanut fruit. Science 109, 329–330 (1949).

    CAS  PubMed  Google Scholar 

  • Bodenburg, E. T.: Lateral transfer of lithium nitrate in Salix. Amer. J. Bot. 16, 229–237 (1929).

    Google Scholar 

  • Böhning, R. H., W.A. Kendall and A. J. Linck: Effect of temperature and sucrose on growth and translocation in tomato. Amer. J. Bot. 40, 150–153 (1953).

    Google Scholar 

  • Böhning, R.H., C.A. Swanson and A. J. Linck: The effect of hypocotyl temperature on translocation of carbohydrates from leaves. Plant Physiol. 27, 417–421 (1952).

    PubMed  Google Scholar 

  • Bollard, E. G.: The use of tracheal sap in the study of apple tree nutrition. J. Exper. Bot. 4, 363–368 (1953).

    CAS  Google Scholar 

  • Bollard, E. G.: Composition of the nitrogen fraction of apple tracheal sap. Austral. J. Biol. Sci. 10, 279–287 (1957).

    CAS  Google Scholar 

  • Bollard, E. G.: Translocation of organic nitrogen in the xylem. Austral. J. Biol. Sci. 10, 292–301 (1957b).

    CAS  Google Scholar 

  • Bollard, E. G.: Nitrogenous compounds in tracheal sap of woody members of the family Rosaceae. Austral. J. Biol. Sci. 10, 288–291 (1957c).

    CAS  Google Scholar 

  • Bollard, E. G.: Nitrogenous compounds in the xylem. In: The physiology of forest trees. Ed. K. V. Thimann, New York, N. Y.: Ronald Press, 1958.

    Google Scholar 

  • Bollard, E. G.: Transport in the xylem. Ann. Rev. Plant Physiol. 11 (1960).

    Google Scholar 

  • Bonner, J.: Accumulation of various substances in girdled stems of tomato plants. Amer. J. Bot. 31, 551–555 (1944).

    CAS  Google Scholar 

  • Braun, H. J.: Die Leitbündelbecken in den Nodien der Dioscoreaceae mit besonderer Berücksichtigung eines unartigen Typs assimilateleitender Zellen. Ber. Dtsch. Bot. Ges. 70, 305–322 (1957).

    Google Scholar 

  • Briggs, G. E., and R.N. Robertson: Diffusion and absorption in disks of potato tissue. New Phytol. 47, 265–283 (1948).

    Google Scholar 

  • Brouwer, R.: The regulating influence of transpiration and suction tension in the water and salt uptake by the roots of intact Vicia faba plants.. Acta Bot. Neerl. 3, 264–312 (1954).

    Google Scholar 

  • Brouwer, R.: Investigations into the occurrence of active and passive components in the ion uptake by Vicia faba. Acta Bot. Neerl. 5, 287–314 (1956).

    Google Scholar 

  • Brown, J. C., R. S. Holmes and L. O. Tiffin: Iron chlorosis in soybeans as related to the genotype of the rootstock. Soil Sci. 86, 75–82 (1958).

    CAS  Google Scholar 

  • Broyer, T. C.: Further observations on the absorption and translocation of inorganic solutes using radioactive isotopes with plants. Plant Physiol. 25, 367–376 (1950).

    CAS  PubMed  Google Scholar 

  • Broyer, T. C., and D. R. Hoagland: Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants. Amer. J. Bot. 30, 261–273 (1943).

    CAS  Google Scholar 

  • Broyer, T. C., and R. Overstreet: Cation exchange in plant roots in relation to metabolic factors. Amer. J. Bot. 27, 425–430 (1940).

    CAS  Google Scholar 

  • Bukovac, M. J., and S.H. Wittwer: Absorption and mobility of foliar applied nutrients. Plant Physiol. 32, 428–435 (1957).

    CAS  PubMed  Google Scholar 

  • Bukovac, M. J., S. H. Wittwer and H. B. Tukey: Anaesthetisation by di-ethyl-ether and the transport of foliar applied radio-calcium. Plant Physiol. 31, 254–255 (1956).

    CAS  PubMed  Google Scholar 

  • Burström, H.: Root surface development, sucrose inversion and free space. Physiol. Plant. 10, 741–755 (1957).

    Google Scholar 

  • Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space“ of wheat roots. Physiol. Plant. 6, 617–635 (1953).

    CAS  Google Scholar 

  • Caldwell, J.: Studies in translocation. II. The movement of food materials in plants. New Phytol. 29, 27–43 (1930).

    Google Scholar 

  • Carpenter, C. W.: Absorption of essential elements by segregated roots of sugar cane. Hawaiian Planters Rec. 40, 137–142 (1936).

    CAS  Google Scholar 

  • Chailakhyan, M. K., and R. G. Butenko: Translocation of assimilates from leaves to shoots during different photoperiodic regimes of plants. Fiziol. Rasteny 4, 450–462 (1957).

    CAS  Google Scholar 

  • Charles, A.: Uptake of dyes into cut leaves. Nature 171, 435–436 (1953).

    CAS  PubMed  Google Scholar 

  • Cheadle, V. I., and K. Esau: Secondary phloem of the Calycanthaceae. University of California Publication, Botany 29, 397–510 (1958).

    Google Scholar 

  • Chen, S. L.: Simultaneous movement of P32 and C14 in opposite directions in the phloem tissue. Amer. J. Bot. 38, 203–211 (1951).

    CAS  Google Scholar 

  • Clark, W. G.: Electrical polarity and auxin transport. Plant Physiol. 12, 409–440 (1937).

    CAS  PubMed  Google Scholar 

  • Clark, W. G.: Electrical polarity and auxin transport. Plant Physiol. 13, 529–532 (1938).

    CAS  PubMed  Google Scholar 

  • Clements, H. F., and C.J. Engard: The upward movement of inorganic solutes as affected by a girdle. Plant Physiol. 13, 103–122 (1938).

    CAS  PubMed  Google Scholar 

  • Crafts, A. S.: Movement of organic materials in plants. Plant Physiol. 6, 1–41 (1931).

    CAS  PubMed  Google Scholar 

  • Crafts, A. S.: Phloem anatomy, exudation, and transport of inorganic nutrients in cucurbits. Plant Physiol. 7, 183–225 (1932).

    Google Scholar 

  • Crafts, A. S.: Sieve-tube structure and translocation in the potato. Plant Physiol. 8, 81–104 (1933).

    CAS  PubMed  Google Scholar 

  • Crafts, A. S.: The protoplasmic properties of the sieve tube. Protoplasma 33, 389–398 (1939a).

    Google Scholar 

  • Crafts, A. S.: The relation between structure and function of the phloem. Amer. J. Bot. 26, 172–177 (1939b).

    Google Scholar 

  • Crafts, A. S.: Movement of materials in phloem as influenced by the porous nature of the tissue. Faraday Soc. Disc. 3, 153–159 (1948).

    Google Scholar 

  • Crafts, A. S.: Movement of assimilates, viruses, growth regulators and chemical indicators in plants. Bot. Rev. 17, 203–284 (1951).

    CAS  Google Scholar 

  • Crafts, A. S., and T. C. Broyer: Migration of solutes into xylem of the roots of higher plants. Amer. J. Bot. 25, 529–535 (1938).

    CAS  Google Scholar 

  • Crafts, A. S., and O. A. Lorenz: Composition of fruits and phloem exudate of cucurbits. Plant Physiol. 19, 326–337 (1944).

    CAS  PubMed  Google Scholar 

  • Crafts, A. S., and S. Yagamuchi: Comparative tests on the uptake and distribution of labelled herbicides by Zebrina pendula and Tradescantia fluminensis. Hilgardia 27, 421–454 (1958).

    CAS  Google Scholar 

  • Currier, H. B., K. Esau and V. I. Cheadle: Plasmolytic studies of the phloem. Amer. J. Bot. 42, 68–81 (1955).

    CAS  Google Scholar 

  • Currier, H.B., and S. Strugger: Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45, 552–559 (1956).

    Google Scholar 

  • Curtis, O. F.: Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activities of living cells. Amer. J. Bot. 16, 154–168 (1929).

    CAS  Google Scholar 

  • Curtis, O. F.: The translocation of solutes in plants. New York, N.Y.: McGraw-Hill Book Co. 1935.

    Google Scholar 

  • Curtis, O. F., and G. M. Asai: Evidence relative to the supposed permeability of sieve-tube protoplasm. Amer. J. Bot. 26, 16S (1939).

    Google Scholar 

  • Curtis, O. F., and H. T. Scofield: A comparison of supplying and receiving tissues and its bearing on the Munch hypothesis of the translocation mechanism. Amer. J. Bot. 20, 502–512 (1933).

    Google Scholar 

  • Davies, R. E., and M. J. Wilkins: Radioisotope Techniques 1, 1–8. London: H. M. Stationery Office. 1951.

    Google Scholar 

  • Dawson, R. F.: Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Amer. J. Bot. 29, 66–71 (1942).

    CAS  Google Scholar 

  • Deleano, T., and M. Andreesco: Der qualitative Stoffwechsel der Mineral- und organischen Substanzen in den Salix fragilis-Blättern während ihrer Entwicklung. Beitr. z. Biol. d. Pflanz. 19, 249–286 (1932).

    Google Scholar 

  • Denny, F. E.: Changes in leaves during the period preceding frost. Contr. Boyce Thompson Inst. 5, 297–312 (1933).

    CAS  Google Scholar 

  • Diamond, J. M., and A. K. Solomon: Intracellular potassium compartment in Nitella axillaris. J. Gen. Phys. 42, 1105–1121 (1959).

    CAS  Google Scholar 

  • Dimbleby, G. W.: The root sap of birch on a podsol. Plant a. Soil 4, 141–153 (1952).

    CAS  Google Scholar 

  • Dixon, H. H., and N. G. Ball: Transport of organic substances in plants. Nature 109, 236–237 (1922).

    Google Scholar 

  • Dixon, H.H., and M.W. Gibbon: Nature 130, 661 (1932).

    Google Scholar 

  • Du Buy, H. G., and R. A. Olsen: The relation between respiration, protoplasmic streaming and auxin transport in the Avena coleoptile. Amer. J. Bot. 27, 401–413 (1940).

    Google Scholar 

  • Dugger, W. M., T. E. Humphreys and B. Calhoun: The influence of boron on starch Phosphorylase and its significance in translocation of sugars in plants. Plant Physiol. 32, 364–370 (1957).

    CAS  PubMed  Google Scholar 

  • Eckerson, S. H.: Protein synthesis by plants. I. Bot. Gaz. 77, 377–390, (1924).

    CAS  Google Scholar 

  • Emmart, F. H.: Loss of phosphorus-32 by plant roots after foliar application. Plant Physiol. 34, 449–453 (1959).

    Google Scholar 

  • Epstein, E.: Passive permeation and active transport of ions in plant roots. Plant Physiol. 30, 529–535 (1955).

    CAS  PubMed  Google Scholar 

  • Epstein, E.: Mineral nutrition of plants. Mechanism of uptake and transport. Ann. Rev. Plant Physiol. 7, 1–24 (1956).

    CAS  Google Scholar 

  • Esau, K.: Phloem structure in the grapevine and its seasonal changes. Hilgardia 18, 217–296 (1948).

    Google Scholar 

  • Esau, K., and V.I. Cheadle: Significance of cell divisions in differentiating secondary phloem. Acta Bot. Neerl. 4, 348–357 (1955).

    Google Scholar 

  • Esau, K., and V.I. Cheadle: Size of pores and their contents in sieve elements of Dicotyledons. Proc. Nat. Acad. Sci. U.S. 45, 156–162 (1959).

    CAS  Google Scholar 

  • Esau, K., V. I. Cheadle and E. M. Gifford: Comparative structure and possible trends of specialization in the phloem. Amer. J. Bot. 40, 9–19 (1953).

    Google Scholar 

  • Fensom, D. S.: An electrokinetic theory of transport. Canad. J. Bot. 35, 573–582 (1957).

    Google Scholar 

  • Fensom, D. S.: The bio-electric potentials of plants and their functional significance. Canad. J. Bot. 37, 1003–1026 (1959).

    CAS  Google Scholar 

  • Freeland, R. O.: Effect of transpiration on the absorption and distribution of mineral salts. Amer. J. Bot. 23, 355–362 (1936).

    CAS  Google Scholar 

  • Freeland, R. O.: Effect of transpiration on the absorption of mineral salts. Amer. J. Bot. 24, 373–374 (1937).

    CAS  Google Scholar 

  • Frey, G.: Aktivität und Lokalisation von saurer Phosphatase in den vegetativen Teilen einiger Angiospermen und in einigen Samen. Ber. Schweiz. Bot. Ges. 64, 390–452 (1954).

    CAS  Google Scholar 

  • Frey-Wyssling, A., and H. R. Müller: Submicroscopic differentiation of plasmodesmata and sieve plates in Cucurbita. J. Ultrastructure Res. 1, 38–48 (1957).

    Google Scholar 

  • Gauch, H. G., and W. M. Duggar: The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466 (1953).

    CAS  PubMed  Google Scholar 

  • Gauch, H. G., and W. M. Duggar: The physiological action of boron in higher plants: a review and interpretation. Agr. Exper. Sta. Maryland Tech. Bull. A-80 (1954).

    Google Scholar 

  • Goldsmith, M. H. M.: Studies on the polarity of auxin transport in Avena coleoptiles. Proc. Int. Bot. Cong. Montreal, Vol. II (Abstr.), 1959.

    Google Scholar 

  • Goss, J. A., and E. M. Romney: Effects of carbonate and some other anions on the shoot content of P32, Ca45, Fe59, Rb86, Sr90, Ru106, Cs137 and Ce144 in bean and barley plants. Plant a. Soil 10, 233–241 (1959).

    CAS  Google Scholar 

  • Greenidge, K. N. H.: Ascent of sap. Ann. Rev. Plant Physiol. 8, 237–257 (1957).

    CAS  Google Scholar 

  • Gregory, F. G., and C. R. Hancock: The rate of transport of natural auxin in woody shoots. Ann. Bot. 19, 451–465 (1955).

    CAS  Google Scholar 

  • Gustafson, F. G.: Upward transport of minerals through the phloem of stems. Science 90, 306–307 (1939).

    CAS  PubMed  Google Scholar 

  • Gustafson, F. G.: Absorption of Co60 by leaves of young plants and its translocation through the plant. Amer. J. Bot. 43, 157–160 (1956).

    CAS  Google Scholar 

  • Gustafson, F. G., and M. Darken: Upward transport of minerals through the phloem of stems. Science 85, 482–483 (1937).

    CAS  PubMed  Google Scholar 

  • Gustafson, F. G., and M. Darken: Further evidence for the upward transport of minerals through the phloem of stems. Amer. J. Bot. 24, 615–621 (1937).

    Google Scholar 

  • Hartig, Th.: Beiträge zur physiologischen Forstbotanik. Allg. Forst- u. Jagd-Z. 36, 257–261 (1860).

    Google Scholar 

  • Hartt, C. E., and G. O. Burr: Int. Bot. Cong. Proc. 7, 748 (1950).

    Google Scholar 

  • Hay, J. R., and K. V. Thimann: The fate of 2–4 dichlorophenoxyacetic acid in bean seedlings. II. Translocation. Plant Physiol. 31, 446–451 (1956).

    CAS  Google Scholar 

  • Helder, R. J., and J. M. Bonga: The influence of light on the loss of labelled phosphorus from bean leaves. Acta Bot. Neerl. 5, 115–121 (1956).

    CAS  Google Scholar 

  • Hepton, C. E. L., R. D. Preston and G.W. Ripley: Electron microscopic observations on the sieve plates in Cucurbita. Nature 176, 868–870 (1955).

    Google Scholar 

  • Hoagland, D. R.: Inorganic Plant Nutrition. Waltham, Mass.: Chronica Botanica. 1944.

    Google Scholar 

  • Hoagland, D. R., and T. C. Broyer: General nature of the process of salt accumulation by plants. Plant Physiol. 11, 471–507 (1936).

    CAS  PubMed  Google Scholar 

  • Hoagland, D. R., and T. C. Broyer: Hydrogen ion effects and the accumulation of salt by barley roots as influenced by metabolism. Amer. J. Bot. 27, 173–185 (1940).

    CAS  Google Scholar 

  • Honert, T. H. van den: On the mechanism of translocation of organic materials in plants. Proc. Kon. Akad. Wetensch. Amsterdam 35, 1104–1111 (1932).

    Google Scholar 

  • Huber, B.: Anatomical and physiological investigations on food translocation in trees. In: Physiology of Forest Trees. Ed. K. V. Thimann. New York, N.Y.: Ronald Press. 1958.

    Google Scholar 

  • Huber, B., and E. Graf: Vergleichende Untersuchungen über die Geleitzellen der Siebröhren. Ber. Dtsch. Bot. Ges. 68, 303–310 (1938).

    Google Scholar 

  • Huber, B., and E. Rouschal: Anatomische und zellphysiologische Beobachtungen am Siebröhrensystem der Bäume. Ber. Dtsch. Bot. Ges. 56, 380–391 (1938).

    Google Scholar 

  • Huber, B., E. Schmidt and H. Jahnel: Untersuchungen über den Assimilatström. I. Tharandter forstl. Jahrb. 88, 1017–1049 (1937).

    Google Scholar 

  • Hull, H. M.: Carbohydrate translocation in tomato and sugar beet with particular reference to temperature effect. Amer. J. Bot. 39, 661–669 (1952).

    CAS  Google Scholar 

  • Humphries, E. C.: The relation between the rate of nutrient uptake by excised barley roots and their content of sucrose and reducing sugars. J. Exper. Bot. 3, 291–309 (1952).

    CAS  Google Scholar 

  • Hylmö, B.: Transpiration and ion absorption. Physiol. Plant. 6, 333–405 (1953).

    Google Scholar 

  • Hylmö, B.: Passive components in the ion absorption of plants. I. The zonal ion and water absorption in Brouwer’s experiments. Physiol. Plant. 8, 433–449 (1955).

    Google Scholar 

  • Jacobson, L.: Maintenance of iron supply in nutrient solution by a single addition of ferric potassium ethylene diamine tetraacetate. Plant Physiol. 26, 411–413 (1951).

    CAS  PubMed  Google Scholar 

  • Jacobson, L., R. J. Hannapel and D. P. Moore: A study of potassium absorption by barley roots. Plant Physiol. 33, 278–282 (1958).

    CAS  PubMed  Google Scholar 

  • Jones, C. H., A.W. Edson and W. J. Morse: The maple sap flow. Vermont Agr. Exper. Sta. Bull. 103, 1–184 (1903).

    Google Scholar 

  • Keitt, G. W., and F. Skoog: Effect of some substituted benzoic acids and related compounds on the distribution of callus growth in tobacco stem expiants. Plant Physiol. 34, 117–122 (1959).

    CAS  PubMed  Google Scholar 

  • Keller, V. P., and H. Z. Deuel: Z. Pflanzenernähr., Düng., Bodenkde. 79, 119–131 (1957).

    CAS  Google Scholar 

  • Kendall, W. A.: Effect of certain metabolic inhibitors on translocation of P32 in bean plants. Plant Physiol. 30, 347–350 (1955).

    CAS  PubMed  Google Scholar 

  • Kessler, B., and Z. W. Moscicki: Effect of iodobenzoic acid and maleic hydrazide upon the transport of foliar applied calcium and iron. Plant Physiol. 33, 70–72 (1958).

    CAS  PubMed  Google Scholar 

  • Koontz, H., and O. Biddulph: Factors affecting absorption and translocation of foliar applied phosphorus. Plant Physiol. 32, 463–470 (1957).

    CAS  PubMed  Google Scholar 

  • Kramer, P. J.: Plant and Soil Water Relationships. New York, N.Y.: McGraw-Hill Book Co. 1949.

    Google Scholar 

  • Kursanov, A. L.: Recent advances in plant physiology in the U.S.S.R. Ann. Rev. Plant Physiol. 7, 401–436 (1956).

    CAS  Google Scholar 

  • Kursanov, A. L.: In: Radioisotopes in Scientific Research. Proceedings of International Conference, Paris 1957. Ed. R. C. Exterman, London: Pergamon Press. 1958.

    Google Scholar 

  • Kursanov, A. L., O. A. Pavlinova and T. P. Afanasieva: The glycolytic enzymes in the conducting tissues of sugar beet. Arch. Biochem. Biophys. 83, 239–247 (1959).

    CAS  PubMed  Google Scholar 

  • Kursanov, A. L., and M. W. Turkhina: The respiration of vascular bundles. DAN USSR 84, 1073–1076 (1952a).

    CAS  Google Scholar 

  • Kursanov, A. L., and M. W. Turkhina: The respiration of vascular tissue and the transport of sucrose. DAN USSR 85, 649–652 (1952b).

    CAS  Google Scholar 

  • Ktjrsanov, A. L., and E. I. Vyskrebentseva: The uptake of the products of photosynthesis in cotton from the leaves and from the walls of the pericarp into the developing hairs. Fiziol. Rasteny 1, 154–163 (1954).

    Google Scholar 

  • Kursanov, A. L., and M. N. Zapro-metov: Adsorbing capacity of protoplasm as the determining factor in translocation of organic substances in plants. DAN USSR 69, 89–92 (1949).

    CAS  Google Scholar 

  • Laties, G. G.: Active transport of salt into plant tissue. Ann. Rev. Plant Physiol. 10, 87–112 (1959a).

    CAS  Google Scholar 

  • Laties, G. G.: The generation of latent ion-transport capacity. Proc. Nat. Acad. Sci. U.S. 45, 163–172 (1959b).

    CAS  Google Scholar 

  • Leonard, O. A.: Translocation of carbohydrates in the sugar beet. Plant Physiol. 14, 55–74 (1939).

    CAS  PubMed  Google Scholar 

  • Leopold, A. C., and F. C. Guernsey: Auxin polarity in the Coleus plant. Bot. Gaz. 115, 147–151 (1953).

    CAS  Google Scholar 

  • Long, W. V., D. V. Sweet and H. B. Tukey: The loss of nutrients by leaching of the foliage. Michigan State Univ. Agr. Exper. Sta. Quart. Bull. 38, 528–532 (1956).

    Google Scholar 

  • Loomis, W. E.: Translocation of carbohydrates in maize. Science 101, 398 (1945).

    CAS  PubMed  Google Scholar 

  • Lowry, M. N., W. C. Huggins and L.A. Forrest: The effect of soil treatment on the mineral composition of exuded maize sap at different stages of development. Georgia Agr. Exper. Sta. Bull. 193, 1–28 (1936).

    Google Scholar 

  • Lundegardh, H.: Bleeding and sap movement. Arkiv f. Bot. 31A N: 102 (1943).

    Google Scholar 

  • Lundegardh, H.: Absorption, transport and exudation of inorganic ions by roots. Arkiv f. Bot. N: o 12 (1945).

    Google Scholar 

  • Lundegardh, H.: The translocation of salts and water through wheat plants. Physiol. Plant. 3, 103–151 (1950).

    Google Scholar 

  • Lundegardh, H.: Anion respiration. In: Active transport and secretion. Soc. Exper. Biol. Symposium No. 8, 262–296 (1954).

    Google Scholar 

  • Lundegardh, H.: Mechanisms of absorption, transport, accumulation and secretion of ions in plants. Ann. Rev. Plant Physiol. 6, 1–24 (1955).

    CAS  Google Scholar 

  • Luttkus, K., and R. Bötticher: Über die Ausscheidung von Aschenstoffen durch die Wurzeln. Planta 29, 325–340 (1939).

    CAS  Google Scholar 

  • Maizel, J. V., A.A. Benson and N. E. Tolbert: Identification of phosphoryl choline as an important constituent of plant saps. Plant Physiol. 31, 407–408 (1956).

    CAS  PubMed  Google Scholar 

  • Mangham, S. N.: On the mechanism of translocation in plant tissues. Ann. Bot. 31, 293–311 (1917).

    CAS  Google Scholar 

  • Mason, T. G., and E.J. Maskell: Studies on the transport of carbohydrates in the cotton plant. I. Ann. Bot. 42, 189–253 (1928a).

    Google Scholar 

  • Mason, T. G., and E.J. Maskell: Studies on the transport of carbohydrates in the cotton plant. II. Ann. Bot. 42, 571–636 (1928b).

    CAS  Google Scholar 

  • Mason, T. G., E. J. Maskell and E. Phillis: Further studies on the transport in the cotton plant. III. Ann. Bot. 50, 23–58 (1936).

    CAS  Google Scholar 

  • Mason, T. G., and E. Phillis: Further studies on the transport in the cotton plant. V. Ann. Bot. 50, 455–499 (1936).

    CAS  Google Scholar 

  • Mason, T. G., and E. Phillis: Concerning the upward movement of soil solutes. Ann. Bot. 4, 765–771 (1940).

    Google Scholar 

  • Mason, T. G., and E. Phillis: The effect of ringing and of transpiration on mineral uptake. Ann. Bot. 2, 345–351 (1945).

    Google Scholar 

  • McIlrath, W. J., and B. F. Palser: Responses of tomato, turnip and cotton to variations in boron nutrition. I. Bot. Gaz. 118, 43–52 (1956).

    CAS  Google Scholar 

  • Mees, G. C., and P. E. Weatherly: The mechanism of water absorption by roots. II. Proc. Roy. Soc. B. 147, 381–391 (1957).

    CAS  Google Scholar 

  • Miettinen, J. K.: Assimilation of amino-acids in plants. In: The utilization of nitrogen and its compounds by plants. Soc. Exper. Biol. Symposium No. 13 (1959).

    Google Scholar 

  • Mitchell, J.W. and J. W. Brown: Movement of 2.4-dichlorophenoxyacetic acid stimulus and its relation to the translocation of organic food materials in plants. Bot. Gaz. 107, 393–407 (1946).

    CAS  Google Scholar 

  • Mittler, T. E.: Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). II. J. Exper. Biol. 35, 74–84 (1958).

    CAS  Google Scholar 

  • Moose, C. A.: Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Plant Physiol. 13, 365–380 (1938).

    CAS  PubMed  Google Scholar 

  • Mothes, K., G. Trefftz, G. Reuter and A. Romeike: Über die Alkaloidsynthese im Sproß. Naturwiss. 41, 530–531 (1954).

    CAS  Google Scholar 

  • Münch, E.: Die Stoffbewegungen in der Pflanze. Jena: G. Fischer. 1930.

    Google Scholar 

  • Münch, E.: Versuche über Wege und Richtungen der Stoffbewegungen im Baum. Forstwiss. Cbl. 59, 305–324 (1937).

    Google Scholar 

  • Münch, E.: Durchlässigkeit der Siebröhren für Durchströmungen. Flora 136, 223–262 (1943).

    Google Scholar 

  • Nelson, C. D., and P. R. Gorham: Uptake and translocation of C14-labelled sugars applied to primary leaves of soybean seedlings. Canad. J. Bot. 35, 339–347 (1957).

    CAS  Google Scholar 

  • Nelson, C. D., H.J. Perkins and P. R. Gorham: Evidence for different kinds of concurrent translocation of photosynthetically assimilated C14 in the soybean. Canad. J. Bot. 37, 1181–1189 (1959).

    Google Scholar 

  • Niedergang-Kamien, E., and A. C. Leopold: The inhibition of transport of Indoleacetic acid by Phenoxyacetic acids. Physiol. Plant. 12, 776–785 (1959).

    Google Scholar 

  • Nightingale, G. T.: The nitrogen nutrition of green plants. Bot. Rev. 3, 85–174 (1937).

    CAS  Google Scholar 

  • Novitsky, Y. I.: Photosynthesis and flow of assimilates in perilla and lectuce grown on different photoperiods. Fiziol. Rasteny 4, 243–253 (1957).

    Google Scholar 

  • Olsen, C.: The significance of concentration for the rate of ion absorption by higher plants in water culture. IV. Physiol. Plant. 6, 848–858 (1953).

    CAS  Google Scholar 

  • Palmquist, E. M.: The simultaneous movement of carbohydrates and fluorescein in opposite directions in the phloem. Amer. J. Bot. 25, 97–105 (1938).

    Google Scholar 

  • Palser, B. F., and W. J. McIlrath: Responses of tomato, turnip and cotton to variations in boron nutrition. II. Bot. Gaz. 118, 53–71 (1956).

    CAS  Google Scholar 

  • Peel, A. J., and P. E. Weatherly: Composition of sieve-tube sap. Nature 184, 1955–1956 (1959).

    CAS  Google Scholar 

  • Penston, N. L.: Return of mineral elements to the soil by plants. Nature 136, 268–269 (1935).

    Google Scholar 

  • Perkins, H. J., C.D. Nelson and P. R. Gorham: A tissue-autoradiographic study of the translocation of C14-labelled sugars in the stems of young soybean plants. C.nad. J. Bot. 37, 871–877 (1959).

    CAS  Google Scholar 

  • Petrie, A. H. K.: Physiological ontogeny in plants and its relation to nutrition. III. Austral. J. Exper. Biol. Med. Sci. 15, 386–408 (1937).

    Google Scholar 

  • Philip, J. R.: The osmotic cell, solute diffusibility and the plant water economy. Plant Physiol. 33, 264–271 (1958).

    CAS  PubMed  Google Scholar 

  • Phillis, E., and T. G. Mason: Studies on transport of carbohydrates into the cotton plant. III. Ann. Bot. 47, 585–634 (1933).

    CAS  Google Scholar 

  • Phillis, E., and T. G. Mason: The effects of ringing on the upward movement of solutes from the root. Ann. Bot. 4, 635–644 (1940).

    CAS  Google Scholar 

  • Porter, L. K., and D. W. Thorne: Interrelation of carbon dioxide and bicarbonate ions causing plant chlorosis. Soil Sci. 79, 373–382 (1955).

    CAS  Google Scholar 

  • Prevot, P., and F. C. Steward: Salient features of the root system relative to the problem of salt absorption. Plant Physiol. 11, 509–534 (1936).

    CAS  PubMed  Google Scholar 

  • Priestley, J. H., and A. Wormall: On solutes exuded by root pressure by vines. New Phytol. 24, 24–38 (1925).

    CAS  Google Scholar 

  • Pristupa, N. A., and A. L. Kursanov: Descending flow of assimilates and its relation to the absorbing activity of the roots. Fiziol. Rasteny 4, 417–424 (1957).

    CAS  Google Scholar 

  • Prokofyev, A. A., and A. M. Sobolev: Concerning phosphorus transport from the leaves to the seeds. Fiziol. Rasteny 4, 14–23 (1957).

    Google Scholar 

  • Prokofyev, A. A., L. P. Zhdanova and A. M. Sobolev: Certain regularities in the flow of substances from leaves into reproductive organs. Fiziol. Rasteny 4, 425–431 (1957).

    Google Scholar 

  • Rabideau, G. S., and G. O. Burr: The use of the C13 isotope as a tracer for transport studies in plants. Amer. J. Bot. 32, 349–356 (1944).

    Google Scholar 

  • Ratner, E. I., T. A. Akimochkina and S. F. Ukhina: Paths and mechanism of mineral substance movement from roots to above-ground plant organs as exemplified by P32 transport. Fiziol. Rasteny 6, 3–12 (1959).

    CAS  Google Scholar 

  • Rediske, J. H., and O. Biddtjlph: The absorption and translocation of iron. Plant Physiol. 28, 576–593 (1953).

    CAS  PubMed  Google Scholar 

  • Resch, A.: Beiträge zur Cytologie des Phloems. Planta 44, 75–98 (1954).

    Google Scholar 

  • Rice, E. L.: Absorption and translocation of ammonium 2.4-dichlorophenoxyacetic acid by bean plants. Bot. Gaz. 109, 301–314 (1948).

    CAS  Google Scholar 

  • Robertson, R. M., T. M. Wilkins and D. C. Weeks: Studies in the metabolism of plant cells. IX. Austral. J. Sci. Res. B. 4, 248–264 (1951).

    CAS  Google Scholar 

  • Roeckl, B.: Nachweis eines Konzentrationshubs zwischen Palisadenzellen und Sieb-röhren. Planta 36, 530–550 (1949).

    Google Scholar 

  • Russell, R., and V. M. Shorrocks: The relationship between transpiration and absorption of inorganic ions by intact plants. J. Exper. Bot. 10, 301–316 (1959).

    Google Scholar 

  • Scott, L. I., and J. H. Priestley: The root as an absorbing organ. I. New Phytol. 27, 125–141 (1928).

    Google Scholar 

  • Schumacher, W.: Untersuchungen über die Lokalisation der Stoffwanderung in den Leitbündeln höherer Pflanzen. Jahrb. wiss. Bot. 73, 770–823 (1930).

    CAS  Google Scholar 

  • Schumacher, W.: Untersuchungen über die Wanderungen des Fluoresceins in den Siebröhren. Jahrb. wiss. Bot. 77, 685–732 (1933).

    Google Scholar 

  • Schumacher, W.: Über die Plasmolysierbarkeit der Siebröhren. Jahrb. wiss. Bot. 88, 545–553 (1939).

    Google Scholar 

  • Schumacher, W.: Zur Bewegung des Fluoresceins in den Siebröhren. Planta 37, 626–634 (1950).

    CAS  Google Scholar 

  • Shkolnik, M. I., and S. A. Abdurashitov: The influence of microelements on the synthesis and translocation of carbohydrates. Fiziol. Rasteny 5, 393–399 (1958).

    CAS  Google Scholar 

  • Sideris, C. P., and B. H. Kraus: Transpiration and translocation phenomena in pineapple. Amer. J. Bot. 42, 707–709 (1955).

    Google Scholar 

  • Sisler, E. C., W. M. Dugger and H. G. Gauch: The role of boron in the translocation of organic compounds in plants. Plant Physiol. 31, 11–17 (1956).

    CAS  PubMed  Google Scholar 

  • Skok, J.: Relationship of boron nutrition to radiosensitivity of sunflower plants. Plant Physiol. 32, 648–658 (1957).

    CAS  PubMed  Google Scholar 

  • Spanner, D. C.: The translocation of sugar in sieve tubes. J. Exper. Bot. 2, 332–342 (1958).

    Google Scholar 

  • Steward, F. C., and J.H. Harrison: The absorption of rubidium bromide by potato disks. Ann. Bot. 3, 427–453 (1939).

    CAS  Google Scholar 

  • Steward, F. C., and J. H. Priestley: Movement of organic materials in plants. A note on a recently suggested mechanism. Plant Physiol. 7, 165–171 (1932).

    CAS  PubMed  Google Scholar 

  • Stewart, I., and C.D. Leonard: Chelated metals for growing plants. In: Mineral Nutrition of Fruit Crops. Ed. N. F. Childers, New Brunswick, N. J.: Rutgers University Press, 1954.

    Google Scholar 

  • Sutcliffe, J. F.: The exchangeability of potassium and bromide ions in cells of red beet root tissue. J. Exper. Bot. 3, 313–327 (1954).

    Google Scholar 

  • Sutcliffe, J. F.: Salt uptake in plants. Biol. Rev. 34, 159–220 (1959).

    CAS  Google Scholar 

  • Thimann, K. V.: On an analysis of activity of two growth promoting substances on plant tissues. Proc. Kon. Akad. Wetensch. Amsterdam 38, 896–912 (1935).

    CAS  Google Scholar 

  • Tolbert, N. E., and H. Wiebe: Phosphorus and sulphur compounds in plant xylem sap. Plant Physiol. 30, 499–504 (1955).

    CAS  PubMed  Google Scholar 

  • Turkhina, M.V., and I. M. Dubinina: Certain peculiarities of the respiratory system of the fibro-vascular bundles. DAN USSR 95, 199–202 (1954).

    Google Scholar 

  • Van Fleet, D. S.: The histochemical localization of enzymes in vascular plants. Bot. Rev. 18, 354–398 (1952).

    Google Scholar 

  • Vernon, L. P., and S. Aranoff: Metabolism of soybean leaves. IV. Arch. Biochem. Biophys. 36, 383–398 (1952).

    CAS  PubMed  Google Scholar 

  • Volz, G.: Elektronenmikroskopische Untersuchungen über die Porengröße pflanzlicher Zell wände. Mikroskopie 7, 251–266 (1952).

    CAS  PubMed  Google Scholar 

  • Wada, E., T. Kisaki and M. Ihida: The tobacco alkaloids in the root and sap of some Nicotiana plants. Arch. Biochem. Biophys. 80, 258–267 (1959).

    CAS  Google Scholar 

  • Walker, N. A.: Ion permeability of the plasmalemma of the plant cell. Nature 180, 94–95 (1957).

    CAS  PubMed  Google Scholar 

  • Walkley, J.: Protein synthesis in mature and senescent leaves of barley. New Phytol. 39, 362–369 (1940).

    CAS  Google Scholar 

  • Walkley, J., and A. K. H. Petrie: Studies on the nitrogen metabolism of plants. IV. Ann. Bot. 5, 661–673 (1941).

    Google Scholar 

  • Wanner, H.: Die Zusammensetzung des Siebröhrensaftes: Kohlenhydrate. Ber. Schweiz. Bot. Ges. 63, 162–168 (1953a).

    CAS  Google Scholar 

  • Wanner, H.: Enzyme der Glycolyse im Phloemsaft. Ber. Schweiz. Bot. Ges. 63, 201–212 (1953b).

    CAS  Google Scholar 

  • Weatherly, P. E., A.J. Peel and G.P. Hill: The physiology of the sieve tube. J. Exper. Bot. 10, 1–16 (1959).

    Google Scholar 

  • Weevers, T.: Die Ergebnisse einiger Ringelungsversuche und ihre Bedeutung für die Stoifwanderung. Rec. Trav. Bot. Neerl. 25 a, 461–474 (1928).

    Google Scholar 

  • Welt, H. G. Van der: Der Mechanismus des Wuchsstofftransports. I. Rec. Trav. Bot. Neerl. 29, 379–496 (1932).

    Google Scholar 

  • Weinstein, L. H., E. R. Purvis, A. N. Meiss and R. L. Uhler: Absorption and translocation of ethylenediamine-tetraacetic acid by sunflower plants. J. Agr. Food Chem. 2, 421–424 (1954).

    CAS  Google Scholar 

  • Weintraub, R. L., and J. W. Brown: Translocation of exogenous growth regulators in the bean seedling. Plant Physiol. 25, 140–149 (1950).

    CAS  PubMed  Google Scholar 

  • Went, F. W.: Plant growth under controlled conditions. III. Amer. J. Bot. 31, 597–618 (1944).

    CAS  Google Scholar 

  • Went, F. W., and H. M. Hull: The effect of temperature on translocation of carbohydrates in the tomato plant. Plant Physiol. 24, 505–526 (1949).

    CAS  PubMed  Google Scholar 

  • Went, F. W., and K. V. Thimann: Phytohormones. New York, N.Y.: Macmillan 1937.

    Google Scholar 

  • Wiebe, H. H., and P. J. Kramer: Translocation of radioactive isotopes from various regions of the roots of barley seedlings. Plant Physiol. 29, 342–348 (1954).

    CAS  PubMed  Google Scholar 

  • Wilkinson, J.: Some aspects of phosphate nutrition in the root system of broad bean (Vicia fabo). J. Exper. Bot. 7, 290–295 (1956).

    CAS  Google Scholar 

  • Willenbrink, J.: Über die Hemmung des Stofftransports in den Siebröhren durch lokale Inaktivierung verschiedener Atmungsenzyme. Planta 48, 269–342 (1957).

    CAS  Google Scholar 

  • Williams, R. F.: Physiological ontogeny and its relation to nutrition. IV. Austral. J. Exper. Biol. Med. Sci. 16, 65–83 (1938).

    CAS  Google Scholar 

  • Williams, R. F.: The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Austral. J. Sci. Res. B. 1, 333–361 (1948).

    Google Scholar 

  • Williams, R. F.: Redistribution of mineral elements during development. Ann. Rev. Plant Physiol. 6, 25–42 (1955).

    CAS  Google Scholar 

  • Woolley, J. T., T. C. Broyer and G. V. Johnson: Movement of chlorine within plants. Plant Physiol. 33, 1–7 (1958).

    CAS  PubMed  Google Scholar 

  • Wright, K. E.: Transpiration and the absorption of mineral salts. Plant Physiol. 14, 171–174 (1939).

    CAS  PubMed  Google Scholar 

  • Wright, K. E., and N.L. Barton: Transpiration and the absorption and distribution of radioactive phosphorus in plants. Plant Physiol. 30, 386–388 (1955).

    CAS  PubMed  Google Scholar 

  • Zholkevich, V. N., L. D. Prusakova and A.A. Lisandr: Translocation of assimilates and respiration of conducting pathways in relation to soil moisture. Fiziol. Rasteny 5, 337–344 (1958).

    CAS  Google Scholar 

  • Ziegler, H.: Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47, 447–500 (1956).

    CAS  Google Scholar 

  • Ziegler, H., and T. E. Mittler: Über den Zuckergehalt der Siebröhren- bzw. Siebzellensäfte von Heracleum Mantegazzianum L. and Picea abies (L.) Karst. Z. Naturforsch. 146, 278–281 (1959).

    Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in trees. I. Plant Physiol. 32, 288–291 (1957a).

    CAS  Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in trees. II. Plant Physiol. 32, 399–404 (1957b).

    CAS  PubMed  Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in trees. III. Plant Physiol. 33, 213–217 (1958).

    CAS  PubMed  Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in the phloem of trees. In: The Physiology of Forest Trees, Ed. K. V. Thimann. New York, N.Y.: Ronald Press, 1958a.

    Google Scholar 

  • Zimmermann, M. H.: Transport in the phloem. Ann. Rev. Plant Physiol. 11, XX–XX (1960).

    Google Scholar 

  • Zimmermann, M. H.: Longitudinal and tangential movement within the sieve-tube system of white ash (Fraxinus americana L.). In: Festschrift zum 60. Geburtstag von Prof. A.Frey-Wyssling, 1960.

    Google Scholar 

  • Zimmermann, P. W., and M. H. Connard: Reversal of direction of translocation of solutes in stems. Contr. Boyce Thompson Inst. 6, 297–302 (1934).

    Google Scholar 

Download references

Authors

Editor information

D. I. Arnon W. Baumeister W. U. Behrens E. v. Boguslawski M. J. Bukovac H. Burghardt M. Erichsen W. Flaig W. H. Fuchs F. Grossmann F. Heilinger G. P. Hill J. Jung H. Kick J. G. Kisser P. J. Kramer H. Kühn P. Limberg H. Linser H. H. Mayr K. Mengel K.-H. Neumann K. Scharrer G. Schmid W. Schuster H. B. Tukey H. B. Tukey Jr. H. Walter S. H. Wittwer

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Wien

About this chapter

Cite this chapter

Hill, G.P. (1969). The Transport of Auxin. In: Arnon, D.I., et al. Pflanzenernährung. Handbuch der Pflanzenernährung und Düngung, vol 1 / 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8220-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8220-8_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8221-5

  • Online ISBN: 978-3-7091-8220-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics