Viruses were recognized and identified as biological entities prior to their characterization by chemical and physical methods. In functional terms, viruses are exogenous biological agents which enter living cells, become replicated in them, and usually cause them to become diseased or die. Viruses differ from microorganisms in lacking the metabolic apparatus which enables the latter to replicate in or on nonliving nutrient media.


Coat Protein Tobacco Mosaic Virus Ribonucleic Acid Amino Acid Replacement Viral Nucleic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderer, F. A.: Reversible Denaturierung des Proteins aus Tabakmosaik- virus. Z. Naturforsch. 14b, 642 (1959).Google Scholar
  2. 2.
    Anderer, F. A.:Versuche zur Bestimmung der serologisch determinanten Gruppen des Tabakmosaikvirus. Z. Naturforsch. 18b, 1010 (1963).Google Scholar
  3. 3.
    Anderer, F. A., H. Uhlig, E. Weber and G. Schramm: Primary Structure 01 the Protein of Tobacco Mosaic Virus. Nature 186, 922 (i960).Google Scholar
  4. 3a.
    Anderer, F. A., B. Wittmann-Liebold and H. G. Wittmann: Weitere Untersuchungen zur Aminosauresequenz des Proteins im Tabakmosaikvirus. Z. Naturforsch. 20b, 1203 (1965).Google Scholar
  5. 4.
    Benjamini, E., J. D. Young, W. J. Peterson, C. Y. Leung and M. Shimizu: Immunochemical Studies on the Tobacco Mosaic Virus Protein. II. The Specific Binding of a Tryptic Peptide of the Protein with Antibodies to the Whole Protein. Biochemistry 4, 2081 (1965).CrossRefGoogle Scholar
  6. 5.
    Brammer, K. W.: Chemical Modification of Viral Ribonucleic Acid. II. Bro- mination and Iodination. Biochim. Biophys. Acta 72, 217 (1963).CrossRefGoogle Scholar
  7. 6.
    Cairns, J.: An Estimate of the Length of the DNA Molecule of T2 Bacteriophage by Autoradiology. J. Mol. Biol. 3, 756 (1961).CrossRefGoogle Scholar
  8. 7.
    Cooper, W. D. and H. S. Loring: The Purine and Pyrimidine Composition of the Tobacco Mosaic Virus and the Holmes Masked Strain. J. Biol. Chem. 211, 505 (1954).Google Scholar
  9. 8.
    Dorner, R. W. and C. A. Knight: The Preparation and Properties of Some Plant Virus Nucleic Acids. J. Biol. Chem. 205, 959 (1953).Google Scholar
  10. 9.
    Fiers, W., L. Lepoutre and L. Vandendriessche: Studies on the Bacteriophage MS 2. I. Distribution of Purine Sequences in the Viral RNA and in Yeast RNA. J. Mol. Biol. 13, 432 (1965).Google Scholar
  11. 10.
    Fiers, W. and R. L. Sinsheimer: The Structure of the DNA of Bacteriophage 0X174. I- The Action of Exopoly nucleotidases. J. Mol. Biol. 5, 408 (1962).CrossRefGoogle Scholar
  12. 11.
    Fraenkel-Conrat, H.: The Role of Nucleic Acid in the Reconstitution of Active Tobacco Mosaic Virus. J. Amer. Chem. Soc. 78, 882 (1956).CrossRefGoogle Scholar
  13. 12.
    Fraenkel-Conrat, H. The Masked —SH Group in Tobacco Mosaic Virus Protein. IN: R. Benesch et al. (Edits.), Sulfur in Proteins (Symposium, 1958 ), p. 339. New York: Academic Press. 1959.Google Scholar
  14. 13.
    Fraenkel-Conrat, H. Chemical Modification of Viral Ribonucleic Acid. I. Alkylating Agents. Biochim. Biophys. Acta 49, 169 (1961).Google Scholar
  15. 14.
    Fraenkel-Conrat, H. Iodination of TMV Protein. Abstract, 142nd Amer. Chem. Soc. Meeting, Atlantic City, p. 44 C (1962).Google Scholar
  16. 15.
    Fraenkel-Conrat, H., J. I. Harris and A. L. Levy: Recent Developments in Techniques for Terminal and Sequence Studies in Peptides and Proteins. In: D. Glick (Edit.), Methods of Biochemical Analysis, Vol. II, p. 359. New York and London: Interscience. 1955.CrossRefGoogle Scholar
  17. 16.
    Fraenkel-Conrat, H. and B. Singer: Virus Reconstitution. II. Combination of Protein and Nucleic Acid from Different Strains. Biochim. Biophys. Acta 24, 540 (1957)CrossRefGoogle Scholar
  18. 17.
    Fraenkel-Conrat, H. and B. Singer: Reconstitution of Tobacco Mosaic Virus. III. Improved Methods and the Use of Mixed Nucleic Acids. Biochim. Biophys. Acta 33, 359 (1959).CrossRefGoogle Scholar
  19. 18.
    Fraenkel-Conrat, H. and B. Singer:The Absence of Phosphorylated Chain Ends in TMV-RNA. Biochemistry I, 120 (1962).Google Scholar
  20. 19.
    Fraenkel-Conrat, H. and B. Singer: Reconstitution of Tobacco Mosaic Virus. IV. Inhibition of Enzymes and other Proteins, and Use of Polynucleotides. Virology 23, 354 (1964).CrossRefGoogle Scholar
  21. 20.
    Fraenkel-Conrat, H. and R. C. Williams: Reconstitution of Active Tobacco Mosaic Virus from its Inactive Protein and Nucleic Acid Components. Proc. Nat. Acad. Sci. (USA) 41, 690 (1955)-Google Scholar
  22. 21.
    Fremery, D. de and C. A. Knight: A Chemical Comparison of Three Strains of Tomato Bushy Stunt Virus. J. Biol. Chem. 214, 559 (I955)-Google Scholar
  23. 22.
    Funatsu, G.: Separation of Tryptic Peptides of Tobacco Mosaic Virus and Strain Proteins by an Improved Method of Column Chromatography. Biochemistry 3, 1351 (1964).CrossRefGoogle Scholar
  24. 23.
    Funatsu, G. and H. Fraenkel-Conrat: Location of Amino Acid Exchanges in Chemically Evoked Mutants of Tobacco Mosaic Virus. Biochemistry 3, 1356 (1964).CrossRefGoogle Scholar
  25. 23a.
    Funatsu, G., A. Tsugita and H. Fraenkel-Conrat: Studies on the Amino Acid Sequence of Tobacco Mosaic Virus Protein. V. Amino Acid Sequences of Two Peptides from Tryptic Digests and Location of Amide Group. Arch. Biochem. Biophys. 105, 25 (1964).Google Scholar
  26. 24.
    Gierer, A. and G. Schramm: Infectivity of Ribonucleic Acid from Tobacco Mosaic Virus. Nature 177, 702 (1956).CrossRefGoogle Scholar
  27. 25.
    Gross, E. and B. Witkop: Nonenzymatic Cleavage of Peptide Bonds: Methionine Residues in Bovine Pancreatic Ribonuclease. J. Biol. Chem. 237, 1856 (1962).Google Scholar
  28. 26.
    Harris, J. I. and J. Hindley: The Protein Subunit of Turnip Yellow Mosaic Virus. J. Mol. Biol. 13, 894 (1965).CrossRefGoogle Scholar
  29. 27.
    Harris, J. I. and C. A. Knight: The Action of Carboxypeptidase on Tobacco Mosaic Virus. Nature 170, 613 (1952).CrossRefGoogle Scholar
  30. 28.
    Harris, J. I. and C. A. Knight:The Action of Carboxypeptidase on Strains of Tobacco Mosaic Virus. J. Biol. Chem. 214, 231 (1955)-Google Scholar
  31. 29.
    Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick and A. Zamir: Structure of a Ribonucleic Acid. Science 147, 1462 (1965).CrossRefGoogle Scholar
  32. 30.
    Hunt, J. A.: Terminal-Sequence Studies of High-Molecular Weight Ribonucleic Acid. The Reaction of Periodate Oxidized Ribonucleosides, 5′-Ribonucleotides and Ribonucleic Acid with Isoniazid. Biochem. J. 95, 541 (1965).Google Scholar
  33. 31.
    Kallen, R. G., M. Simon and J. Marmur: The Occurrence of a new Pyrimidine Base Replacing Thymine in a Bacteriophage DNA: 5-Hydroxymethyl Uracil. J. Mol. Biol. 5, 248 (1962).CrossRefGoogle Scholar
  34. 32.
    Kaper, J. M. and R. L. Steere: Infectivity of Tobacco Ringspot Virus Nucleic Acid Preparations. Virology 7, 127 (1959).CrossRefGoogle Scholar
  35. 33.
    Kassanis, B.: Properties and Behaviour of a Virus Depending for its Multiplication on Another. J. Gen. Microbiol. 27, 477 (1962).Google Scholar
  36. 34.
    Kerr, I. M., E. A. Pratt and I. R. Lehman: Exonucleolytic Degradation of High-Molecular-Weight DNA and RNA to Nucleoside 3′-Phosphates by a Nuclease from B. subiilis. Biochem. Biophys. Res. Comm. 20, 154 (1965).CrossRefGoogle Scholar
  37. 35.
    Kleinschmidt, A. K., D. Lang, D. Jacherts und R. K. Zahn: Darstellung und Längenmessungen des gesamten Desoxyribonucleinsäure-Inhaltes von T2-Bakteriophagen. Biochim. Biophys. Acta 61, 857 (1962).Google Scholar
  38. 36.
    Knight, C. A.: The Chemical Constitution of Viruses. In: K. M. Smith and M. A. Lauffer (Edits.), Advances in Virus Research, Vol. II, p. 152. New York: Academic Press. 1954.Google Scholar
  39. 36a.
    Lin, J.-Y., CH. M. Tsung and H. Fraenkel-Conrat: The Coat Protein of the RNA Phage MS-2. J. Mol. Biol, (in press).Google Scholar
  40. 57.
    Macleod, R. and R. Markham: Experimental Evidence of a Relationship Between Turnip Yellow Mosaic Virus and Wild Cucumber Mosaic Virus. Virology 19, 190 (1963).CrossRefGoogle Scholar
  41. 38.
    Markham, R.: Nucleic Acids in Virus multiplication. In: P. Fildes and W. E. Van Heyningen (Edits.). The Nature of Virus Multiplication (Symposium), p. 85. Cambridge: Univ. Press. 1952.Google Scholar
  42. 39.
    Narita, K.: Isolation of Acetylpeptide from Enzymic Digests of TMV-Protein. Biochim. Biophys. Acta 28, 184 (1958).CrossRefGoogle Scholar
  43. 40.
    Neu, H. C. and L. A. Heppel: Nucleotide Sequence Analysis of Polyribonucleotides by Means of Periodate Oxidation Followed by Cleavage with an Amine. J. Biol. Chem. 239, 2927 (1964).Google Scholar
  44. 41.
    Niu, C.-I. and H. Fraenkel-Conrat: C-Terminal Amino Acid Sequence of Tobacco Mosaic Virus Protein. Biochim. Biophys. Acta 16, 597 (1955).CrossRefGoogle Scholar
  45. 42.
    Ralph, R. K., R. J. Young and H. G. Khorana: Studies on Polynucleotides. XXI. Amino Acid Acceptor Ribonucleic Acids (2). The Labeling of Terminal 5′-Phosphomonoester Groups and a Preliminary Investigation of Adjoining Nucleotide Sequences. J. Amer. Chem. Soc. 85, 2002 (1963).Google Scholar
  46. 43.
    Richardson, C. C.: Phosphorylation of Nucleic Acid by an Enzyme from T4 Bacteriophage-Infected Escherichia coli. Proc. Nat. Acad. Sci. (USA) 54, 158(1965)Google Scholar
  47. 44.
    Rushizky, G. W. and C. A. Knight: Products Obtained by Digestion of the Nucleic Acids of Some Strains of Tobacco Mosaic Virus with Pancreatic Ribo- nuclease. Proc. Nat. Acad. Sci. (USA) 46, 945 (I960).Google Scholar
  48. 45.
    Rushizky, G. W., C. A. Knight and H. A. Sober: Studies on the Preferential Specificity of Pancreatic Ribonuclease as Deduced from Partial Digests. J. Biol. Chem. 236, 2732 (1961).Google Scholar
  49. 46.
    Rushizky, G. W., H. A. Sober and C. A. Knight: Products Obtained by Digestion of the Nucleic Acids of Some Strains of Tobacco Mosaic Virus with Ribonuclease Tv Biochim. Biophys. Acta 61, 56 (1962).Google Scholar
  50. 4J.
    Schuster, H. und G. Schramm: Bestimmung der biologisch wirksamen Einheit in der Ribosenucleinsaure des Tabakmosaikvirus auf chemischem Wege. Z. Naturforsch. 13 b, 697 (1958).Google Scholar
  51. 48.
    Schuster, H. and H. G. Wittmann: The Inactivating and Mutagenic Action of Hydroxylamine on Tobacco Mosaic Virus Ribonucleic Acid. Virology 19, 421 (1963).CrossRefGoogle Scholar
  52. 49.
    Siegel, A., M. Zaitlin and O. P. Sehgal: The Isolation of Defective Tobacco Mosaic Virus Strains. Proc. Nat. Acad. Sci. (USA) 48, 1845 (1962).CrossRefGoogle Scholar
  53. 50.
    Singer, B. and H. Fraenkel-Conrat: Studies of Nucleotide Sequences in TMV-RNA. I. Stepwise Use of Phosphodiesterase. Biochim. Biophys. Acta 72, 534 (1963).CrossRefGoogle Scholar
  54. 51.
    Singer, B. and H. Fraenkel-Conrat:Effects of Light in the Presence of Iron Salts on Ribonucleic Acid and Model Compounds. Biochemistry 4, 226 (1965).CrossRefGoogle Scholar
  55. 52.
    Singer, B. and H. Fraenkel-Conrat:Action of Polynucleotide Phosphorylase on TMV-RNA. Federat. Proc. (Amer. Soc. Exp. Biol.) 24, 603 (1965).Google Scholar
  56. 53.
    Singer, B. and H. Fraenkel-Conrat:Dye-Catalyzed Photoinactivation of Tobacco Mosaic Virus Ribonucleic Acid. Biochemistry 5, 2446 (1966).CrossRefGoogle Scholar
  57. 54.
    Singer, B., M. Sherwood and H. Fraenkel-Conrat: Studies of Nucleotide Sequences in Tobacco Mosaic Virus. II. The Action of Spleen Phosphodiesterase. Biochim. Biophys. Acta 108, 306 (1965).Google Scholar
  58. 55.
    Sinsheimer, R. L.: Nucleotides from T2r+ Bacteriophage. Science 120, 551 (T954)-Google Scholar
  59. 56.
    Staehelin, M.: Reaction of Tobacco Mosaic Virus Nucleic Acid with Formaldehyde. Biochim. Biophys. Acta 29, 410 (1958).CrossRefGoogle Scholar
  60. 57.
    Staehelin, M.: Inactivation of Virus Nucleic Acid with Glyoxal Derivatives. Biochim. Biophys. Acta 31, 448 (1959)-Google Scholar
  61. 58.
    Steinschneider, A. and H. Fraenkel-Conrat: Studies of Nucleotide Sequences in Tobacco Mosaic Virus Ribonucleic Acid. III. Periodate Oxidation and Semi- carbazone Formation. Biochemistry 5, 2729 (1966).CrossRefGoogle Scholar
  62. 59.
    Steinschneider, A. and H. Fraenkel-Conrat:Studies of Nucleotide Sequences in Tobacco Mosaic Virus Ribonucleic Acid. IV. Use of Aniline in Stepwise Degradation. Biochemistry 5, 2735 (1966).CrossRefGoogle Scholar
  63. 60.
    Sugiyama, T.: 5′-Linked End Group of RNA from Bacteriophage MS2. J. Mol. Biol. 11, 856 (1965).CrossRefGoogle Scholar
  64. 6J.
    Sugiyama, T.: Tobacco Mosaic Viruslike Rods Formed by “Mixed Reconstitution” between MS 2 Ribonucleic Acid and Tobacco Mosaic Virus Protein. Virology 28, 488 (1966).CrossRefGoogle Scholar
  65. 62.
    Sugiyama, T. and H. Fraenkel-Conrat: Identification of 5′-Linked Adenosine as End Group of TMV-RNA. Proc. Nat. Acad. Sei. (USA) 47, 1393 (1961).CrossRefGoogle Scholar
  66. 63.
    Sugiyama, T. and H. Fraenkel-Conrat:The End-Groups of Tobacco Mosaic Virus RNA. II. Nature of the 3′ Linked Chain End in TMV and of Both Ends in Four Strains. Biochemistry 2, 332 (1963).CrossRefGoogle Scholar
  67. 64.
    Symons, R. H., M. W. Rees, M. N. Short and R. Markham: Relationships Between the Ribonucleic Acid and Protein of Some Plant Viruses. J. Mol. Biol. 6, 1 (1963).CrossRefGoogle Scholar
  68. 65.
    Takahashi, I. and J. Marmur: Replacement of Thymidylic Acid by Deoxy- uridylic Acid in the Deoxyribonucleic Acid of a Transducing Phage for Bacillus subtilis. Nature 197, 794 (1963).CrossRefGoogle Scholar
  69. 66.
    Tsugita, A. and H. Fraenkel-Conrat: The Amino Acid Composition and C-Terminal Sequence of a Chemically Evoked Mutant of TMV. Proc. Nat. Acad. Sei. (USA) 46, 636 (i960).Google Scholar
  70. 67.
    Tsugita, A. and H. Fraenkel-Conrat: The Composition of Proteins and Chemically Evoked Mutants of TMV- RNA. J. Mol. Biol. 4, 73 (1962).CrossRefGoogle Scholar
  71. 68.
    Tsugita, A., D. T. Gish, J. Young, H. Fraenkel-Conrat, C. A. Knight and W. M. Stanley: The Complete Amino Acid Sequence of the Protein of Tobacco Mosaic Virus. Proc. Nat. Acad. Sei. (USA) 46, 1463 (i960).Google Scholar
  72. 69.
    Tsung, C. M. and H. Fraenkel-Conrat: Preferential Release of Aspartic Acid by Dilute Acid Treatment of Tryptic Peptides. Biochemistry 4, 793 (1965).CrossRefGoogle Scholar
  73. 70.
    Verwoerd, D. W., H. Kohlhage and W. Zillig: Specific Partial Hydrolysis of Nucleic Acids in Nucleotide Sequence Studies. Nature 192, 1038 (1961).CrossRefGoogle Scholar
  74. 71.
    Vielmetter, W. und H. Schuster: Die Basenspezifität bei der Induktion von Mutationen durch salpetrige Säure imPhagenT2. Z. Naturforsch. 15b, 304 (i960).Google Scholar
  75. 72.
    Watson, J. D.: Molecular Biology of the Gene. New York: Benjamin. 1965.Google Scholar
  76. 72A.
    Weber, K., G. Notani, M. Wikler and W. Königsberg: Amino Acid Sequence of the f2 Coat Protein. J. Mol. Biol. 20, 423 (1966).CrossRefGoogle Scholar
  77. 73.
    Whitfeld, P. R.: A Method for the Determination of Nucleotide Sequence in Polyribonucleotides. Biochem. J. 58, 390 (1954).Google Scholar
  78. 74.
    Whitfeld, P. R. Identification of End Groups in Tobacco Mosaic Virus Ribonucleic Acid by Enzymatic Hydrolysis. J. Biol. Chem. 237, 2865 (1962).Google Scholar
  79. 74a.
    Wittmann, H. G.: Comparison of the Tryptic Peptides of Wild Strains of Tobacco Mosaic Virus. Virology 12, 613 (i960).Google Scholar
  80. 75.
    Whitfeld, P. R. Proteinuntersuchungen an Mutanten des TMV als Beitrag zum Problem des genetischen Codes. Z. Vererbungsl. 93, 491 (1962).CrossRefGoogle Scholar
  81. 76.
    Whitfeld, P. R. Übertragung der genetischen Information. Naturwiss. 50, 76 (1963).CrossRefGoogle Scholar
  82. 77.
    Whitfeld, P. R. Proteinanalysen von chemisch induzierten Mutanten des Tabakmosaikvirus. Z. Vererbungsl. 95 333 (1964).CrossRefGoogle Scholar
  83. 78.
    Wittmann-Liebold, B. und H. G. Wittmann: Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. Aminosäuresequenzen des Proteins des Tabakmosaikvirusstammes Dahlemense. Teil III: Diskussion der Ergebnisse. Z. Vererbungsl. 94, 427 (1963).CrossRefGoogle Scholar
  84. 79.
    Yamazaki, H., J. Bancroft and P. Kaesberg: Biophysical Studies of Broad Bean Mottle Virus. Proc. Nat. Acad. Sei. (USA) 47, 979 (1961).CrossRefGoogle Scholar
  85. 80.
    Yamazaki, H. and P. Kaesberg: Biophysical and Biochemical Properties of Wild Cucumber Mosaic Virus and of Two Related Virus-Like Particles. Biochim. Biophys. Acta 51, 9 (1961).CrossRefGoogle Scholar
  86. 81.
    Zaitlin, M. and W. F. Mccaughey: Amino Acid Composition of a Nonfunctional Tobacco Mosaic Virus Protein. Virology 26, 500 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Wien · New York 1966

Authors and Affiliations

  • H. Fraenkel-Conrat
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations