Quinone methides occur in Nature both as products of fungal metabolism and as plant pigments. The chemistry of some of these compounds, which are also known as methylenequinones, quinone methines, or quinomethanes, has been covered in several reviews (35, 81, 142, 155). They are derived from quinones by replacement of one of the carbonyl oxygen atoms by a methylene or substituted methylene group and are systematically named as derivatives of methylene cyclohexadienones. In addition, evidence has accumulated in recent years for the participation of quinone methides as transient intermediates in certain biochemical processes. In the present review, emphasis is laid upon the characteristic properties of these quinonoid compounds, which differ in many respects from those of quinones themselves.


Dimethyl Ether Colouring Matter Tripterygium Wilfordii Hydriodic Acid Quinone Methide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, E. and K. Lundquist: Spectrochemical Estimation of Phenylcoumaran Elements in Lignin. Acta Chem. Scand. 17, 13 (1963).Google Scholar
  2. 2.
    Adler, E. und B. Stenemur: Ligninchemische Modellstudien: Über Chinon- methide. Chem. Ber. 89, 291 (1956).Google Scholar
  3. 3.
    Barothy, J. and H. Neukom: Synthesis of Hydroxybenzyl-isothiocyanate and its Isolation from White Mustard Seeds. Chem. and Ind. 1965, 308.Google Scholar
  4. 4.
    Barton, D. H. R. and J.B.Hendrickson: The Constitution and Synthesis of Fuscin. J. Chem. Soc. (London) 1956, 1028.Google Scholar
  5. 5.
    Barton, D. H. R., P. De Mayo, G.A.Morrison and H. Raistrick: The Constitutions of Atrovenetin and of Some Related Herqueinone Derivatives. Tetrahedron 6, 48 (1959).Google Scholar
  6. 6.
    Barton, D. H. R., P. De Mayo, G. A. Morrison, W. H. Schaeppi and H. Raistrick: Some Observations on the Constitutions of Herqueinone and Related Compounds. Chem. and Ind. 1956, 552.Google Scholar
  7. 7.
    Bertini, S.: A Compound from Ascochyta pisi having Antibiotic Action. Ann. sper. agrar. (Roma) 11, 545 (1957).Google Scholar
  8. 8.
    Bhatnagar, S. S. and P. V. Divekar: Pristimerin, the Antibacterial Principle of Pristimera indica. I. Isolation, Toxicity, and Antibacterial Action. J. Sei, Indust. Res. (India) 10B, 56 (1951).Google Scholar
  9. 9.
    Bhatnagar, S. S., P. V. Divekar and N. L. Dutta: Pristimerin. Indian Patent 40970 (1951).Google Scholar
  10. 10.
    Birch, A. J.: The Structure of Fuscin. Chem. and Ind. 1955, 682.Google Scholar
  11. 10a.
    Birch, A. J.: Biosynthetic Relations of Some Natural Phenolic and Enolic Compounds. Fortschr. Chem. Organ. Naturstoffe 14, 186 (1957).Google Scholar
  12. 11.
    Birch, A. J., P. Fitton, E. Pride, A. J. Ryan, H. Smith and W. B. Whalley: Studies in Relation to Biosynthesis. Part XVII. Sclerotiorin, Citrinin, and Citromycetin. J. Chem. Soc. ( London ) 1958, 4576.Google Scholar
  13. 12.
    Birch, A. J. and M. Kocor: Studies in Relation to Biosynthesis. Part XXII. Palitantin and Cyclopaldic Acid. J. Chem. Soc. ( London ) 1960, 866.Google Scholar
  14. 13.
    Birch, A. J., A. J. Ryan, J. Schofield and H. Smith: Studies in Relation to Biosynthesis. Part XXXVII. Some Structures Derived from Acetic Acid by Two Pathways. J. Chem. Soc. ( London ) 1965, 1231.Google Scholar
  15. 14.
    Birkinshaw, J. H., A. Bracken, S. E. Michael and H. Raistrick: Studies in the Biochemistry of Micro-organisms. 83. Fuscin. Part 2. Derivatives and Degradation Products. Biochem. J. 48, 67 (1951).Google Scholar
  16. 15.
    Brian, P. W., P. J. Curtis, H. G. Hemming and G. L. F. Norris: Pulvilloric Acid, an Antibiotic obtained from Cultures of Penicillium pulvillorum. Trans. Brit. Mycological Soc. 40, 369 (1957).Google Scholar
  17. 16.
    Brockmann, H., R. Haase und E. Freiensehner: Über das Dracorubin, III. Mitt. Oxydativer Abbau zu Draconol und Dracosäure. Ber. dtsch. chem. Ges. 77, 279 (1944)-Google Scholar
  18. 17.
    Brockmann, H. und H. Junge: Die Konstitution des Dracorhodins, eines neuen Farbstoffes aus dem,,Drachenblut. Ber. dtsch. chem. Ges. 76, 751 (1943).Google Scholar
  19. 18.
    Brodie, A. F.: The Role of Naphthoquinones in Oxidative Metabolism. In: R. A. Morton (Edit.): Biochemistry of Quinones, p. 355. New York: Academic Press. 1965.Google Scholar
  20. 19.
    Brown, J. P., N. J. Cartwright, A. Robertson and W. B. Whalley: The Chemistry of Fungi. Part IV. The Constitution of the Phenol, CnH1603, from Citrinin. J. Chem. Soc. ( London ) 1949, 859.Google Scholar
  21. 20.
    Brown, J. P., N. J. Cartwright, A. Robertson and W. B. Whalley: The Chemistry of Fungi. Part V. The Constitution of Citrinin, J. Chem. Soc. ( London ) 1949, 867.Google Scholar
  22. 21.
    Bullimore, B. K., J. F. W. Mcomie and A. B. Turner: Synthesis of Pulvilloric Acid and Methyl Dihydropulvillorate. Manuscript in preparation.Google Scholar
  23. 22.
    Cameron, D. W., P. M. Scott and Lord Todd: Side-chain Amination: A New Reaction of Nuclear-alkylated Quinones. J. Chem. Soc. ( London ) 1964, 42.Google Scholar
  24. 23.
    Cartwright, N. J. and R. D. Haworth: The Constituents of Natural Phenolic Resins. Part XIX. The Oxidation of Ferulic Acid. J. Chem. Soc. (London) I944, 535Google Scholar
  25. 24.
    Cartwright, N. J., A.Robertson and W. B. Whalley: The Chemistry of Fungi. Part VII. Synthesis of Citrinin and Dihydrocitrinin. J. Chem. Soc. ( London ) 1949, 1563.Google Scholar
  26. 25.
    Cason, J., J. S. Correia, R. B. Hutchison and R. F. Porter: The Structure of Trimethylherqueinone B. Tetrahedron 18, 839 (1962).Google Scholar
  27. 26.
    Chapman, E., A. G. Perkin and R.Robinson: The Colouring Matters of Carajura. J. Chem. Soc. (London) 1927, 3015.Google Scholar
  28. 27.
    Chmielewska, I.: Oxidative and Photosynthetic Phosphorylation Involving 2-Methylquinones. Biochim. Biophys. Acta 39, 170 (1960).Google Scholar
  29. 28.
    Chmielewska, I. and J. Cielak: Vitamins and Antivitamins K: Tautomerism of Dicoumarol. Tetrahedron 4, 135 (1958).Google Scholar
  30. 29.
    Chou, T. Q. and P. F. Mei: The Principle of the Chinese Drug Lei-Kung-Teng, Tripterygium wilfordii Hook. I. The Colouring Substance and the Sugars. Chinese J. Physiol. 10, 529 (1936).Google Scholar
  31. 30.
    Clark, V. M.: The Synthesis of ADP and ATP via the Oxidation of Quinol Phosphates. In: Mechanismen enzymatischer Reaktionen, p. 276. Berlin: Springer-Verlag. 1964.Google Scholar
  32. 31.
    Collins, D. A., F. Haworth, K. Isarasena and A. Robertson: The Pigments of “Dragon’s Blood” Resin. Part I. Dracorubin. J. Chem. Soc. ( London ) 1950, 1876.Google Scholar
  33. 32.
    Cooke, R. G., B. L. Johnson and W. Segal: Colouring Matters of Australian Plants. VI. Haemocorin: The Structure of the Aglycone. Austral. J. Chem. 11, 230 (1958).Google Scholar
  34. 33.
    Cooke, R. G. and W. Segal: Colouring Matters of Australian Plants. IV. Haemocorin: A Unique Glycoside from Haemodorum corymbosum VAHL. Austral. J. Chem. 8, 107 (1955).Google Scholar
  35. 34.
    Cooke, R. G. and W. Segal: Colouring Matters of Australian Plants. V. Haemocorin: The Chemistry of the Aglycone. Austral. J. Chem. 8, 413 (1955).Google Scholar
  36. 35.
    Cooke, R. G. and R.H.Thomson: Naturally Occurring Quinone Methines and Related Compounds. Rev. Pure Appl. Chem. (Australia) 8, 85 (1958).Google Scholar
  37. 36.
    Cram, D. J.: Mould Metabolites. III. The Structure of Citrinin. J. Amer. Chem. Soc. 70, 4244 (1948).Google Scholar
  38. 3j.
    Cram, D. J.: Mould Metabolites. V. The Stereochemistry and Ultraviolet Absorption Spectrum of Citrinin. J. Amer. Chem. Soc. 72, 1001 (1950).Google Scholar
  39. 38.
    Curtis, R. F., P. C. Harries and C. H. Hassall: The Biosynthesis of Phenols. Part VIII. The Synthesis of (2-Carboxy-3,5-dihydroxyphenyl)propan-2-one. J. Chem. Soc. ( London ) 1964, 5382.Google Scholar
  40. 39.
    Dagley, S. and M. D. Patel: Oxidation of Cresol and Related Compounds by a Pseudomonas. Biochem. J. 66, 227 (1957).Google Scholar
  41. 39a.
    Daly, J. W. and B. Witkop: Recent Studies on the Centrally Active Endogenous Amines. Angew. Chem., Int. Ed. 2, 421 (1963).Google Scholar
  42. 40.
    Davies, J. E. and J. C. Roberts: Studies in Mycological Chemistry. Part V. Synthesis of 2,5-Dihydroxy-7-methyl-1,4-naphthaquinone. J. Chem. Soc. ( London ) 1956, 2173.Google Scholar
  43. 41.
    Dean, F. M.: Naturally Occurring Oxygen Ring Compounds. London: Butter- worths. 1963.Google Scholar
  44. 42.
    Dean, F. M., J. Staunton and W. B. Whalley: The Chemistry of Fungi. Part XXXVI. A Revised Structure for Sclerotiorin. J. Chem. Soc. (London) I959, 3004.Google Scholar
  45. 43.
    Ellis, L. C.: Biogenesis of Citrinin. Dissertation Abstr. 23, 4109 (1963).Google Scholar
  46. 44.
    Erdtman, H.: Dehydrierung in der Coniferylreihe. I. Dehydrodi-eugenol und Dehydrodi-isoeugenol. Biochem. Z. 258, 172 (1933).Google Scholar
  47. 45.
    Erdtman, H. and C. A. Wachtmeister: Phenoldehydrogenation as a Biosynthetic Reaction. Festschrift A. Stoll, p. 144. Basel: Birkhauser. 1957.Google Scholar
  48. 46.
    Erickson, R. E., A.F.Wagner and K. Folkers: Coenzyme Q. XLVIII. Data on Quinone Methines as Reaction Intermediates and their Possible Role in Oxidative Phosphorylation. J. Aer. Chem. Soc. 85, 1535 (1963).Google Scholar
  49. 47.
    Eyton, W. B., W. D. Ollis, M. Fineberg, O. R. Gottlieb, I. S. Guimaraes and M. T. Magalhaes: The Neoflavonoid Group of Natural Products. II. The Examination of Machaerium scleroxylon and Some Biogenetic Proposals regarding the Neoflavanoids. Tetrahedron 21, 2697 (1965).Google Scholar
  50. 48.
    Eyton, W. B., W. D. Ollis, I. O. Sutherland, O. R. Gottlieb, M. T. Magalhaes and L. M. Jackman: The Neoflavanoid Group of Natural Products. I. Dalbergiones — a New Class of Quinones. Tetrahedron 21, 2683 (1965).Google Scholar
  51. 49.
    Fehlmann, M. und A. Niggli: Die Struktur des Blattfarbstoffes Cordeauxia- Chinon. Helv. Chim. Acta 48, 305 (1965).Google Scholar
  52. 50.
    Fieser, L. F. and R.N.Jones: Celastrol. Spectrographic Characterization and Color Tests. J. Amer. Pharm. Assoc. 31, 315 (1942).Google Scholar
  53. 51.
    Freudenberg, K.: Forschungen am Lignin. Fortschr. Chem. organ. Naturstoffe 20, 41 (1962).Google Scholar
  54. 52.
    Freudenberg, K.: Lignin: Its Constitution and Formation from Hydroxycinnamyl Alcohols. Science 148, 595 (1965).Google Scholar
  55. 53.
    Freudenberg, K., C.-L. Chen, J. M. Harkin, H. Nimz and H. Renner: Observations on Lignin. Chem. Communs. 1965, 224.Google Scholar
  56. 54.
    Freudenberg, K. und M. Friedmann: Oligomere Zwischenprodukte der Ligninbildung. Chem. Ber. 93, 2138 (1960).Google Scholar
  57. 55.
    Freudenberg, K. und G. Grion: Beitrag zum Bildungsmechanismus des Lignins und der Lignin-Kohlenhydrat-Bindung. Chem. Ber. 92, 1355 (1959).Google Scholar
  58. 56.
    Freudenberg, K., G. Grion und J. M. Harkin: Nachweis vonChinonmethiden bei der enzymatischen Bildung des Lignins. Angew. Chem. 70, 743 (1958).Google Scholar
  59. 57.
    Freudenberg, K. und J. M. Harkin: Modelle für die Bindung des Lignins an die Kohlenhydrate. Chem. Ber. 93, 2814 (1960).Google Scholar
  60. 58.
    Freudenberg, K., J. M. Harkin und H.-K. Werner: Das Vorkommen von Benzylaryläthern im Lignin. Chem. Ber. 97, 909 (1964).Google Scholar
  61. 59.
    Freudenberg, K. und K.-C. Renner: Über Biphenyle und Diaryläther unter den Vorstufen des Lignins. Chem. Ber. 98, 1879 (1965).Google Scholar
  62. 60.
    Freudenberg, K. und H.Tausend: Weitere trimere Zwischenprodukte der Ligninbildung. Chem. Ber. 96, 2081 (1963).Google Scholar
  63. 61.
    Freudenberg, K. und H.Tausend: Penta- und Hexalignol. Chem. Ber. 97, 3418 (1964).Google Scholar
  64. 62.
    Freudenberg, K. und H.-K. Werner: Die Polymerisation der Chinonmethide. Chem. Ber. 97, 579 (1964).Google Scholar
  65. 63.
    Galarraga, J. A., K. G. Neill and H. Raistrick: The Colouring Matters of Penicillium herquei Banier and Sartory. Biochem. J. 61, 456 (1955)•Google Scholar
  66. 64.
    Gisvold, O.: The Constitution of Celastrol. J. Amer. Pharm. Assoc. 31, 529 (1942).Google Scholar
  67. 65.
    Gore, T. S., R. V. Talavdekar and K. Venkataraman: A New Partial Synthesis of Citrinin. Current Sei. (India) 19, 20 (1950).Google Scholar
  68. 66.
    Grant, P. K. and A. W. Johnson: Pristimerin. Part I. The Nature of the Chromophore. J. Chem. Soc. ( London ) 1957, 4079.Google Scholar
  69. 67.
    Pristimerin. Part II. Further Reactions involving the Chromophore, J. Chem. Soc. ( London ) 1957, 4669.Google Scholar
  70. 68.
    Grant, P. K., A.W.Johnson, P. F. Juby and T.J.King: Pristimerin. Part III. A Modified Structure for the Chromophore. J. Chem. Soc. ( London ) 1960, 549.Google Scholar
  71. 69.
    Harada, R., H. Kakisawa, S. Kobayashi, M. Musya, K. Nakanishi and Y. Takahashi: Structure of Pristimerin, a Quinonoid Triterpene. Tetrahedron Letters 1962, 603.Google Scholar
  72. 70.
    Harborne, J. B.: Anthocyanins and their Sugar Components. Fortschr. Chem. organ. Naturstoffe 20, 165 (1962).Google Scholar
  73. 71.
    Harman, R. E., J. Cason, F. H. Stodola and A. Ladkins: Structural Features of Herqueinone, a Red Pigment from Penicillium herquei. J. Organ. Chem. (USA) 20, 1260 (1955).Google Scholar
  74. 72.
    Hassall, C. H. and D.W.Jones: The Biosynthesis of Phenols. Part IV. A New Metabolic Product of Aspergillus terreus Thom. J. Chem. Soc. ( London ) 1962, 4189.Google Scholar
  75. 73.
    Hathway, D. E.: The Lignans. In: W. E. Hillis (Edit.), Wood Extractives, p. 159. New York: Academic Press. 1962.Google Scholar
  76. 74.
    Haworth, R. D.: The Chemistry of the Lignan Group of Natural Products. J. Chem. Soc. ( London ) 1942, 448.Google Scholar
  77. 75.
    Hearon, H. M. and W. S. Macgregor: The Naturally Occurring Lignans. Chem. Rev. 55, 957 (1955).Google Scholar
  78. 76.
    Hesse, G. und W. Klingel: Über das Drachenblut. Liebigs Ann. Chem. 524, 14 (1936).Google Scholar
  79. 77.
    Hetherington, A.C. and H. Raistrick: Chemical Constitution of a new Yellow Colouring Matter, Citrinin, Produced from Dextrose by Penicillium citrinum Thom. Trans. Roy. Soc. (London) B220, 269 (1931).Google Scholar
  80. 78.
    Hill, J. A., A. W. Johnson, T. J. King, S. Natori and S. W. Tam: Synthetical Approaches to the Pristimerin Chromophore. J. Chem. Soc. ( London ) 1965, 361.Google Scholar
  81. 79.
    Hill, R. K. and L. A. Gardella: The Absolute Configuration of Citrinin. J. Organ. Chem. (USA) 29, 766 (1964).Google Scholar
  82. 80.
    Hultzsch, K.: Studien auf dem Gebiet der Phenol-Formaldehyd-Harze, II. Mitt. Chinonmethide als Zwischenprodukte bei der Phenolharz-Härtung. Ber. dtsch. chem. Ges. 74, 898 (1941).Google Scholar
  83. 81.
    Hultzsch, K.: Chinonmethide. In: Chemie der Phenolharze, S. 63. Berlin: Springer- Verlag. 1950.Google Scholar
  84. 82.
    Iwai, I. and H. Mishima: Constitution of Ascochitine. Chem. and Ind. 1965, 186.Google Scholar
  85. 83.
    Johnson, A. W., P. F. Juby, T. J. King and S. W. Tam: Pristimerin. Part IV. Total Structure. J. Chem. Soc. ( London ) 1963, 2884.Google Scholar
  86. 84.
    Johnson, D. H., A. Robertson and W. B. Whalley: The Chemistry of Fungi. Part XIII. Citrinin. J. Chem. Soc. ( London ) 1950, 2971.Google Scholar
  87. 84a.
    Karanatsios, D., J. S. Scarpa und C. H. Eugster: Struktur von Fuerstion. Helv. chim. Acta 49, 1151 (1966).Google Scholar
  88. 85.
    Karrer, P. und C. H. Eugster: Über Fuerstiachinon. Helv. Chim. Acta 35, II39 (1952).Google Scholar
  89. 86.
    Kaufman, S., W. F. Bridgers, F. Eisenberg and S. Friedman: The Source of Oxygen in Phenylalanine Hydroxylase and Dopamines-hydroxylase Catalyzed Reactions. Biochem. Biophys. Res. Comm. 9, 497 (1962).Google Scholar
  90. 87.
    King, F. E. and J. G. Wilson: The Chemistry of Extractives from Hardwoods. Part XXXVII. The Lignans of Guaiacum officinale L. J. Chem. Soc. ( London ) 1964, 4011.Google Scholar
  91. 88.
    Kováč, S., P. Nemec, V. Betina and J. Balan: Chemical Structure of Citrinin. Nature 190, 1104 (1961).Google Scholar
  92. 89.
    Kulkarni, A. B.: Pristimerin. Bull. Nat. Inst. Sei. (India), No. 28, p. 125 (1965).Google Scholar
  93. 90.
    Kulkarni, A. B., R. C. Shah, S. Seshadri and V. V. Mhaskar: Pristimerin. II. J. Sei. Indust. Res. (India) B 17, 111 (1958).Google Scholar
  94. 91.
    Lederer, E.: Über Ursprung und Funktion einiger Methylgruppen in verzweigten Fettsäuren, in Pflanzensterinen und in Chinonen der Vitamin-K- und Ubichinongruppe. Experientia 20, 473 (1964).Google Scholar
  95. 92.
    Levin, E. Y. and S. Kaufman: Studies on the Enzyme Catalysing the Conversion of 3,4-Dihydroxyphenylethylamine to Norepinephrine. J. Biol. Chem. 236, 2043 (1961).Google Scholar
  96. 93.
    Linn, B. O., C. H. Shunk, E. L. Wong and K. Folkers: Coenzyme Q. XXXVIII. Cyclization of Coenzyme Q to the Corresponding Chromenols with Sodium Hydride. J. Amer. Chem. Soc. 85, 239 (1963).Google Scholar
  97. 94.
    Lundquist, K. und G. E. Miksche: Nachweis eines neuen Verknupfungsprinzips von Guajacylpropaneinheiten im Fichtenlignin. Tetrahedron Letters 1965, 2131.Google Scholar
  98. 95.
    Lynch, D. M.: The Structure and Synthesis of Degradation Products from the Pigment Herqueinone. Dissertation Abstr. 25, 5564 (1965).Google Scholar
  99. 96.
    Mamont, P., P. Cohen, R. Azerad et M. Vilkas: Les quinones dans l’oxydation phosphorylante. II. Dimérisation acide des vitamines K. III. Isomérisation acide des vitamines K en présence de composés insaturés. Bull. soc. chim. France 1965, 2513, 2824.Google Scholar
  100. 97.
    Marton, J. and E. Adler: Carbonyl Groups in Lignin. III. Mild Catalytic Hydrogénation of Bjôrkman Lignin. Acta Chem. Scand. 15, 370 (1961).Google Scholar
  101. 98.
    Mathieson, D. W. and W. B. Whalley: The Conformation of Citrinin. J. Chem. Soc. ( London ) 1964, 4640.Google Scholar
  102. 99.
    Mchale, D. and J. Green: A Dimeric Oxidation Product of y-Tocopherol. Chem. and Ind. 1963, 982.Google Scholar
  103. 100.
    Potassium Ferricyanide Oxidation Product of a-Tocopherol. Chem and Ind. 1964, 366.Google Scholar
  104. 100a.
    Chrom-3-en-6-ols. The Action of Pyridine on Alk-2-enylbenzoquinones. J. Chem. Soc. ( London ) 1965, 5060.Google Scholar
  105. 101.
    Mcomie, J. F. W., A. B. Turner and M. S. Tute: The Structure of Pulvilloric Acid. Chem. and Ind. 1963, 1689; J. Chem. Soc. (London), in press (1966).Google Scholar
  106. 102.
    Mehta, P.P. and W. B. Whalley: The Absolute Configuration of Citrinin. J. Chem. Soc. ( London ) 1963, 3777.Google Scholar
  107. 103.
    Michael, S. E.: Fuscin. A Metabolic Product of Oidiodendron fuscum ROBAK. I. Preparation, Properties, and Antibacterial Activity. Biochem. J. 43, 528 (1948).Google Scholar
  108. 104.
    Money, T.: A Postulated Biosynthesis of Some “Anomalous” Natural Phenolic Compounds. Nature 199, 592 (1963).Google Scholar
  109. 105.
    Morimoto, H. and I. Imada: Photochemical Reactions of Ubiquinone-(35), 11. Ubichromenol-(35) and Isoubiquinone-(35). Chem. Pharm. Bull. (Tokyo) 12, 739 (1964).Google Scholar
  110. 106.
    Morrison, G. A., I. C. Paul and G.A.Sim: The Structures of Atrovenetin and Herqueinone. Proc. Chem. Soc. (London) 1962, 352.Google Scholar
  111. 106a.
    Mosbach, K. and I. Ljungcrantz: On the Biosynthesis of Barnol, a new Phenolic Metabolite. Biochim. Biophys. Acta 86, 203 (1964).Google Scholar
  112. 107.
    Nakanishi, K., H. Kakisawa and Y. Hirata: The Structures of Pristimerin and Celastrol. Bull. Chem. Soc. Japan 29, 7 (1956).Google Scholar
  113. 108.
    Nakanishi, K., Y. Takahashi and H. Budzikiewicz: Pristimerin. Spectroscopic Properties of the Dienone-Phenol-Type Rearrangement Products and Other Derivatives. J. Organ. Chem. (USA) 30, 1729 (1965).Google Scholar
  114. 109.
    Narasimhachari, N. and L. C. Vining: Studies on the Pigments of Pénicillium herquei. Canad. J. Chem. 41, 641 (1963).Google Scholar
  115. 110.
    Neill, K. G. and H. Raistrick: Metabolites of Pénicillium atrovenetum G. Smith. I. Atrovenetin, a New Crystalline Colouring Matter. Biochem. J. 65, 166 (1957).Google Scholar
  116. 111.
    Nelan, D. R. and C. D. Robeson: The Oxidation Product from α-Tocopherol and Potassium Ferricyanide and Its Reaction with Ascorbic and Hydrochloric Acids. J. Amer. Chem. Soc. 84, 2963 (1962).Google Scholar
  117. 112.
    Nimz, H.: Isolierung von Guajacylglycerin-β-coniferylather aus Fichtenholz. Chem. Ber. 98, 533 (1965).Google Scholar
  118. 113.
    Nord, F. F. and W. J. Schubert: The Biogenesis of Lignins. In: P. Bernfeld (Edit.), Biogenesis of Natural Compounds, p. 693. Oxford and New York: Pergamon Press. 1963.Google Scholar
  119. 114.
    Oku, H. and T. Nakanishi: A Toxic Metabolite from Ascochyta fabae having Antibiotic Activity. Phytopathology 53, 1321 (1963). U5. Oxford, A. E.: The Chemistry of Antibiotic Substances other than Penicillin.Google Scholar
  120. 115.
    Annu. Rev. Biochem. 14, 757 (1945).Google Scholar
  121. 115a.
    Paul, I. C. and G. A. Sim: Fungal Metabolites. III. The Structure of Atrovenetin: X-Ray Analysis of Atrovenetin Orange Trimethyl Ether Ferrichloride. J. Chem. Soc. ( London ) 1965, 1097.Google Scholar
  122. 116.
    Pollock, A. E.: Production of Citrinin by Five Species of Penicillium. Nature 160, 331 (1947)Google Scholar
  123. 117.
    Ponniah, L. and T. R. Seshadri: A Survey of Anthocyanins from Indian Sources. J. Sei. Indust. Res. (India) 12B, 605 (1953).Google Scholar
  124. 118.
    Synthesis of Carajurone Hydrochloride. Proc. Indian Acad. Sei. 39 A, 45 (1954)Google Scholar
  125. 119.
    Raistrick, H. and G. Smith: The Metabolic Products of Aspergillus terreus Thom. A New Mould Metabolic Product — Terrein. Biochem. J. 29, 606 (1935).Google Scholar
  126. 120.
    Roberts, J. C. and C. W. H. Warren: Studies in Mycological Chemistry. IV. Purpurogenone, a Metabolic Product of Penicillium purpurogenum Stoll. J. Chem. Soc. ( London ) 1955, 2992.Google Scholar
  127. 121.
    Robertson, A. and W. B. Whalley: The Pigments of “Dragon’s Blood” Resin. II. A Synthesis of Dracorhodin. J. Chem. Soc. ( London ) 1950, 1882.Google Scholar
  128. 122.
    Robertson, A. and W. B. Whalley: The Chemistry of the “Insoluble Red” Woods. VI. Santalin and Santarubin. J. Chem. Soc. ( London ) 1954, 2794.Google Scholar
  129. 123.
    Robertson, A., W. B. Whalley and J.Yates: The Pigments of “Dragon’s Blood” Resins. III. The Constitution of Dracorubin. J. Chem. Soc. (London) 1950, 3117-Google Scholar
  130. 124.
    Roux, D. G. and S. E. Drewes: Structural Factors Associated with the Redness induced in certain Condensed Tannins by Sunlight or Heat. Chem. and Ind. 1965, 1442.Google Scholar
  131. 125.
    Schechter, M. S. and H. L. Haller: Identity of the Red Pigment in the Roots of Tripterygium wilfordii and Celastrus scandens. J. Amer. Chem. Soc. 64, 182 (1942).Google Scholar
  132. 126.
    Schindler, O.: Die Ubichinone (Coenzyme Q). Fortschr. Chem. organ. Naturstoffe 20, 73 (1962).Google Scholar
  133. 127.
    Schudel, P., H.Mayer, J. Metzger, R. Rüegg und O. Isler: Über die Chemie des Vitamins E. 2. Mitt. Die Struktur des Kaliumferricyanid-Oxidationsproduktes von α-Tocopherol. Hlv. Chim. Acta 46, 636 (1963).Google Scholar
  134. 128.
    Schwenck, E.: Tumor Action of Some Quinonoid Compounds in the Cheek-pouch Test. Drug Research 12, 1143 (1962).Google Scholar
  135. 129.
    Schwenck, E., G. J. Alexander, A. M. Gold and D. F. Stevens: Biogenesis of Citrinin. J. Biol. Chem. 233, 1211 (1958).Google Scholar
  136. 130.
    Senoh, S., C. R. Creveling, S. Udenfriend and B. Witkop: Chemical, Enzymatic and Metabolic Studies on the Mechanism of Oxidation of Dopamine. J. Amer. Chem. Soc. 81, 6236 (1959).Google Scholar
  137. 131.
    Shah, R. C. and A. B. Kulkarni: Structure of Pristimerin. Nature 173, 1237 (1954)-Google Scholar
  138. 132.
    Shah, R. C., A. B. Kulkarni and V. M. Thakore: Pristimerin. Part I. J. Chem. Soc. ( London ) 1955, 2515.Google Scholar
  139. 133.
    Skinner, W. A. and R. M. Parkhurst: Oxidation Products of Vitamin E and its Model, 6-Hydroxy-2,2,5,7,8-pentamethylchroman. VII. Trimer Formed by Alkaline Ferricyanide Oxidation. J. Organ. Chem. (USA) 29, 3601 (1964).Google Scholar
  140. 134.
    Smith, G.: The Effect of Adding Trace Elements to Czapek-Dox Medium. Brit. Mycol. Soc. Trans. 32, 280 (1949).Google Scholar
  141. 135.
    Smith, L. I. and F. J. Dobrovolny: The Reaction between Duroquinone and Sodium Malonic Esters. J. Amer. Chem. Soc. 48, 1693 (I926)-Google Scholar
  142. 136.
    Smith, L. I. and E. W. Kaiser: The Reaction between Quinones and Metallic Enolates. XI. Duroquinone and the Enolates of Cyanoacetic Ester and of 0-Diketones. J. Amer. Chem. Soc. 62, 138 (1940).Google Scholar
  143. J37.
    Smith, L. I., R. W. H. Tess and G. E. Ullyot: The Reaction between Quinones and Metallic Enolates. XIX. The Structure of Diduroquinone. J. Amer. Chem. Soc. 66, 1320 (1944).Google Scholar
  144. 138.
    Stodola, F. H., K. B. Raper and D. I. Fennell: Pigments of Pénicillium herquei. Nature 167, 773 (1951).Google Scholar
  145. 13g.
    Terni, G. and I. Shibazaki: Studies on Citrinin and its Related Metabolites. I. Citrinin-producing Microbe and Citrinin. J. Fermentation Technol. (Japan) 26, 336 (1948).Google Scholar
  146. 140.
    Thomas, R.: Studies in the Biosynthesis of Fungal Metabolites. 3. The Biosynthesis of Fungal Perinaphthenones. Biochem. J. 78, 807 (1961).Google Scholar
  147. 140.
    a. Thomas, R.: Private communication.Google Scholar
  148. 141.
    Timonin, M. I. and J. W. Rouatt: Production of Citrinin by Aspergillus Species of the Candidus Group. Canad. J. Public Health 35, 80 (1944).Google Scholar
  149. 142.
    Turner, A. B.: Quinone Methides. Quart Rev. (Chem. Soc. London) 18, 347 (1964).Google Scholar
  150. 143.
    Turner, A. B. and J. F. W. Mcomie: The Synthesis of 3,5-Dimethoxy-β- carbomethoxyphthalic Acid. Tetrahedron 22, 31 (1966).Google Scholar
  151. 144.
    Vilkas, M. et E. Lederer: Sur un mécanisme possible de la phosphorylation oxydative. Experientia 18, 546 (1962).Google Scholar
  152. 144a.
    Vilkas, M. et E. Lederer: Les quinones dans l’oxydation phosphorylante. I. Généralités. Bull. soc. chim. France 1965, 2505.Google Scholar
  153. 145.
    Wagner, A. F., A. Lusi, C. H. Shunk, B. O. Linn, D. E. Wolf, C. H. Hoffman, R. E. Erickson, B. Arison, N. R. Trenner and K. Folkers: Coenzyme Q. XLVII. New 5-Phosphomethyl-6-chromanyl Derivatives from a Novel Reaction of Interest in Oxidative Phosphorylation. J. Amer. Chem. Soc. 85, 1534 (1963).Google Scholar
  154. 146.
    Wagner, A. F., P. E. Wittreich, B. Arison, N. R. Trenner and K. Folkers: Synthesis of the New 3,4-Dihydro-2H-naphtho[1,2-b]pyran-6-yl Phosphate from Vitamin K1(20). J. Amer. Chem. Soc. 85, 1178 (1963).Google Scholar
  155. 147.
    Wakselman, M. et M. Vilkas: Condensations des phénols o-chlorométhylés ou o-hydroxyméthylés avec quelques hydrocarbures éthyléniques. Synthèse de chromannes. C. R. hebd. séances Acad. Sci. 258, 1526 (1964).Google Scholar
  156. 148.
    Wang, Y. and H.-S. Ting: Syntheses of d- and /-Citrinins. Science Record (China) 4, 269 (1951).Google Scholar
  157. 149.
    Warren, H. H., G. Dougherty and E. S. Wallis: The Synthesis of Dihydro- citrinin and Citrinin. J. Amer. Chem. Soc. 71, 3423 (1949).Google Scholar
  158. 150.
    Warren, H. H., G. Dougherty and E. S. Wallis: The Synthesis and Antibiotic Activity of Analogs of Citrinin and Dihydrocitrinin. J. Amer. Chem. Soc. 79, 3812 (1957).Google Scholar
  159. 151.
    Wenkert, E.: Biosynthesis of Hydrolyzable Tannins. Chem. and Ind. 1959, 906.Google Scholar
  160. 152.
    Wenkert, E., A. Fuchs and J. D. Mcchesney: Chemical Artifacts from the Family Labiatae, J. Organ. Chem. (USA) 30, 2931 (1965).Google Scholar
  161. 153.
    Whalley, W. B.: Oxygen Heterocyclic Fungal Metabolites. Progr. Organ. Chem. 4, 72 (1958).Google Scholar
  162. 154.
    Whalley, W. B.:Some Structural and Biogenetic Relationships of Plant Phenolics. In: W. D. Ollis (Edit.), Chemistry of Natural Phenolic Compounds, p. 20. Oxford and New York: Pergamon Press. 1961.Google Scholar

Copyright information

© Springer-Verlag / Wien · New York 1966

Authors and Affiliations

  • A. B. Turner
    • 1
  1. 1.AberdeenUK

Personalised recommendations