Magnetogasdynamics and Electromagnetogasdynamics

  • Shih-I Pai


In this chapter, we consider the plasma as a single fluid. The fundamental equations are given in chapter II, § 8. They are as follows:
$$p={{R}_{p}}\rho T$$
$$\frac{\partial \rho }{\partial t}+\frac{\partial }{\partial {{x}^{i}}}(\rho {{u}^{i}})=0$$
$$\rho \frac{D{{u}^{i}}}{Dt}=-\frac{\partial pt}{\partial {{x}^{i}}}+\frac{\partial {{\tau }^{ij}}}{\partial {{x}^{j}}}+{{F}_{{{e}^{i}}}}+{{F}_{{{g}^{i}}}}$$
$$\frac{\partial \rho \overline{em}}{\partial t}+\frac{\partial \rho \overline{em}{{u}^{j}}}{\partial {{x}^{j}}}=-\frac{\partial {{u}^{j}}pt}{\partial {{x}^{j}}}+\frac{\partial {{u}^{i}}{{\tau }^{ij}}}{\partial {{x}^{j}}}+{{E}^{j}}{{J}^{j}}+\frac{\partial {{Q}^{j}}}{\partial {{x}^{j}}}$$
$$\nabla \times \overrightarrow{H}=\overrightarrow{J}+\frac{\partial \varepsilon \overrightarrow{E}}{\partial t}$$
$$\nabla \times \overrightarrow{E}=-\frac{\partial {{\mu }_{e}}\overrightarrow{H}}{\partial t}$$
$$\frac{\partial {{\rho }_{e}}}{\partial t}+\frac{\partial {{J}^{j}}}{\partial {{x}^{j}}}=0$$
$${{J}^{i}}={{i}^{i}}+{{\rho }_{e}}{{u}^{i}}=\sigma [{{E}^{i}}+{{\mu }_{e}}(\overrightarrow{u}\times {{\overrightarrow{H}}^{i}})]+{{\rho }_{e}}{{u}^{i}}$$
$$\nabla \cdot \overrightarrow{H}=0$$
$$\nabla \cdot \overrightarrow{E}=\frac{1}{\varepsilon }\rho e$$
where the unknowns to be investigated are u i , p, ρ, T,E i , H i , ρ e and J i . Equations (4.9) and (4.10) are not independent equations which may be derived from equations (4.5), (4.6) and (4.7) (cf. chapter III, § 5); but they are important relations, hence we list them here for reference.


Magnetic Field Mach Number External Electric Field Fundamental Equation Compressible Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfvén, H.: On the Existence of Electromagnetic-hydrodynamic Waves. Arkiv F. mat. astr. o. fysik, Bd. 29B, No. 2, 1942.Google Scholar
  2. 2.
    Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Publications, Inc., 1957.Google Scholar
  3. 3.
    Friedrichs, K. O.: Nonlinear Wave Motion in Magneto-hydrodynamics. Los Alamos Laboratory Report, 1954.Google Scholar
  4. 4.
    Hartmann, J.: Hg-dynamics. I. Kgl. Danske Vidensk. Selskab Math.-fys. Medd. XV: 6, 1937.Google Scholar
  5. 5.
    De Hoffmann, F., and E. Teller: Magnetogasdynamic Shock. Phys. Rev., vol. 80, No. 4, Nov. 15, 1950, pp. 692–703.Google Scholar
  6. 6.
    Lundquist, S.: Studies in Magneto-hydrodynamics. Arkiv F. Fysik, Bd. 5, No. 15, 1952, pp. 297–347.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Pai, S. I.: Energy Equation of Magneto-gasdynamics. Phys. Rev., vol. 105, No. 5, March 1, 1957, pp. 1424–1426.Google Scholar
  8. 8.
    Pai, S. I.: Introduction to the Theory of Compressible Flow. Van Nostrand Co., Inc., Princeton, N. J., 1958.Google Scholar
  9. 9.
    Pai, S. I.: Viscous Flow Theory, I-Laminar Flow. Van Nostrand Co., Inc., Princeton, N. J., 1956.Google Scholar
  10. 10.
    Stratton, J. A.: Electromagnetic Theory. McGraw-Hill Book Company, Inc., New York, 1941.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Wien 1962

Authors and Affiliations

  • Shih-I Pai
    • 1
  1. 1.Institute for Fluid Dynamics and Applied MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations