Skip to main content
  • 182 Accesses

Abstract

On the basis of well established principles and using well known experimental facts, flow diagrams have been presented for a minature plant, which, by employing appropriate sensing elements would maintain within narrow limits and with a mimimum of manual operation and supervision, the desired composition of the atmosphere in a closed respiratory system. This plant would in addition make full use of all wastes and utilize carbon dioxide and water present to synthesize formaldehyde from which dextrose carbohydrates would be generated by polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Colichman, Astronautics (December 1959).

    Google Scholar 

  2. G. C. Ray and E. O. Box Ind. Eng. Chem. 42, 1315 (1950).

    Google Scholar 

  3. N. B. Bhatt and S. K. K. Jatkar, J. Indian Inst. Sci., 20A (1937).

    Google Scholar 

  4. H. Lefebvre and M. van Overbeke, Chimie et Industrie, Spec. No. (April 1934), pp. 338–42.

    Google Scholar 

  5. A. Koenig and R. Weinig, Chem. Zentralbl., 11, 2134 (1926).

    Google Scholar 

  6. R. H. Sahasrabudhey, et al. Proc. Indian Acad. Sci., 27A 366–74 217–24 (1950); ibid., 31A, 217–24(1950); J. Indian Chem. Soc., 28, 377–82 (1951).

    Google Scholar 

  7. S. Ruben, U. S. Patent 1 431 047 (October 3, 1922).

    Google Scholar 

  8. P. X. Spillane, Australian Patent 111 151 (July 29, 1940).

    Google Scholar 

  9. Eloi Ricard U. S. Patent 2 205 542 (June 25, 1940).

    Google Scholar 

  10. O. Loew, J. Prakt. Chem. (2) 33, 321 (1886); c.f. Berichte 20, 142 and 3039 (1887); ibid., 21, 270 (1888); ibid., 22, 470 (1889).

    Google Scholar 

  11. A. Butlerow, Ann. d Chemie, 120, 295 (1861).

    Google Scholar 

  12. E. Fischer and J. Tafel, Ber. 20, 1088, 2566 (1887).

    Google Scholar 

  13. E. Fischer and J. Tafel, Ber. 23, 2114 (1890).

    Google Scholar 

  14. W. Kuster and F. Schoder, Z. Physiol. Chem. 141, 110 (1924).

    Google Scholar 

  15. E. Schmitz, Ber. 46, 2327 (1913).

    Google Scholar 

  16. W. G. Berl and C. E. Feazel, J. Am. Chem. Soc. 73, 2054 (1951).

    Google Scholar 

  17. W. Pigman, The Carbohydrates (Academic Press, New York 1957).

    Google Scholar 

  18. C. E. Bricker and H. R. Johnson, Ind. Eng. Chem. 17, 400 (1945).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Wien

About this paper

Cite this paper

Akerlof, G.C. (1961). Food to Food Process Cycle for Extended Travel in Space. In: Reuterswärd, C.W.P. (eds) XIth International Astronautical Congress Stockholm 1960 / XI. Internationaler Astronautischer Kongress / XIe Congrès International D’Astronautique. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8071-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8071-6_59

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8073-0

  • Online ISBN: 978-3-7091-8071-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics