Advertisement

Selected Areas of Structural Research in Rocket Vehicles

  • M. L. Williams
  • G. Gerard
  • G. A. Hoffman
Conference paper

Abstract

Space flight has served to emphasize in a most profound manner the significant rewards to be obtained by recognizing and pursuing the interplay between structures and materials in design. Of particular pertinence in this regard are rocket boosters which constitute an interesting example of the design interaction between structures and materials. Since booster vehicles are currently the focus of much structures and materials research efforts, it is our intent to review the progress and potential in the following three areas: structural integrity of solid propellant grains, shell structures of homogeneous materials, and pressure vessel design with filamentary materials.

Keywords

Solid Propellant Structural Research Rocket Motor Elastic Shear Modulus Filamentary Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Barrère, A. Jaumotte, B. F. de Veubeke, and J. Vanderkerckhove, Rocket Propulsion, Van Nostrand (1960).Google Scholar
  2. [2]
    M. L. Williams, Institute of Aeronautical Sciences Summer Meeting, June 1959, Paper No. 59–110.Google Scholar
  3. [3]
    M. L. Williams, “Mechanical Properties and the Design of Solid Propellant Motors”, American Rocket Society Solid Propellant Conference, Princeton, New Jersey (January 1960).Google Scholar
  4. [4]
    J. D. Ferry, Journal of the American Chemical Society, 72, 3746 (1950).CrossRefGoogle Scholar
  5. [5]
    J. D. Ferry, E. R. Fitzgerald, and L. D. Grandine, Industrial Engineering Chemistry, 44, 703 (1952).CrossRefGoogle Scholar
  6. [6]
    A. V. Tobolsky, Journal of Applied Physics, 27, 673 (1956).CrossRefGoogle Scholar
  7. [7]
    M. L. Williams, R. F. Landel, and J. D. Ferry, Journal of the American Chemical Society, 77, 3701–3707 (1955).CrossRefGoogle Scholar
  8. [8]
    T. L. Smith, California Institute of Technology, JPL Memorandum No. 20–178 (January 7, 1959 ).Google Scholar
  9. [9]
    S. N. Zhurkov, and T. P. Sanfirova, Journal of Technical Physics, 3, 1586 (1958).Google Scholar
  10. [10]
    T. Alfrey, Mechanical Behavior of High Polymers, Interscience Publishers, New York, (1948).Google Scholar
  11. [11]
    B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann and Cie, Paris (1953).MATHGoogle Scholar
  12. [12]
    E. H. Lee, Viscoelastic Stress Analysis, First Symposium on Naval Structural Mechanics, Stanford University (August 1958).Google Scholar
  13. [13]
    Olczak, Non-Homogeneity in Elasticity and Plasticity, Pergamon Press (1960).Google Scholar
  14. [14]
    D. D. Ordahl, and M. L. Williams, Jet Propulsion (June 1957).Google Scholar
  15. [15]
    M. L. Williams, “Some Thermal Stress Design Data for Rocket Grains,” American Rocket Society Journal (April 1959).Google Scholar
  16. [16]
    L. W. Morland, and E. H. Lee, Brown University Division of Applied Mathematics, Technical Report No. I (NOrd 18594 /1, September 1959 ).Google Scholar
  17. [17]
    G. Gerard, American Rocket Society Preprint No. 729–58 (Nov. 1958).Google Scholar
  18. [18]
    G. Gerard, Jet Propulsion, 28, No. 8, 511–520 (August 1958).Google Scholar
  19. [19]
    H. F. Hardrath, and L. Ohman, NACA Report 1117 (1953).Google Scholar
  20. [20]
    G. Sachs, J. G. Sessler, F. R. Pray, and T. H. Yeh., Syracuse University Research Institute, Report No. MET481–581 Fl (Jan. 1958).Google Scholar
  21. [21]
    J. G. Sessler, and K. S. Grewal, Syracusa University Research Institute, Report No. MET604–597P4, (Quarterly Progress Rept. No. 4, Contract NOas 58–855e, July 1959 ).Google Scholar
  22. [22]
    G. A. Hoffman, Astronautics, The American Rocket Society, August 1958, pp. 31–33, 68.Google Scholar
  23. [23]
    E. Scala, American Rocket Society, Paper No. 1098–60 (April 1960).Google Scholar
  24. [24]
    W. O. Everling, Proceedings of the Sixth Sagamore Conference of Syracuse University, pp. 94–115 (1959).Google Scholar
  25. [25]
    R. E. Young, “Pressure Vessels from Plastic Bonded Glass Fibers,” A chapter from “Composite Materials and Composite Structures” Proceedings of the Sixth Sagamore Conference of Syracuse University, pp. 369–382 (1959).Google Scholar
  26. [26]
    H. Schuerch, American Rocket Society Paper No. 1096–60 (April 1960)Google Scholar
  27. [27]
    S. S. Brenner, Properties of Whiskers, a chapter from Growth and Perfection of Crystals, Chapman and Hall, Ltd., London, pp. 157–190 (1958).Google Scholar
  28. [28]
    G. A. Hoffman and W. J. Knapp, 61st Annual Meeting of The American Ceramic Society, Chicago, Illinois (May 20, 1959).Google Scholar
  29. [29]
    R. Bacon, Journal of Applied Physics, pp. 283–290 (February 1960).Google Scholar

Copyright information

© Springer-Verlag Wien 1961

Authors and Affiliations

  • M. L. Williams
    • 1
    • 2
    • 3
  • G. Gerard
    • 1
    • 2
    • 3
  • G. A. Hoffman
    • 1
    • 2
    • 3
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.New York UniversityNew YorkUSA
  3. 3.The RAND CorporationSanta MonicaUSA

Personalised recommendations