In a foregoing article (71) we have given a general discussion of some pertinent problems and principles and have treated the light absorption of symmetrical cyanine dyes and aza derivatives of cyanines in a simple manner. We shall present here along similar lines some important further applications of the theory.


Wave Function Acridine Orange Single Bond Triple Bond Conjugate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, P. W. and L. E. Sutton: Tables of Interatomic Distances and Molecular Configurations Obtained by Electron Diffraction in the Gas Phase. Acta Crystallogr. 3, 46 (1950)Google Scholar
  2. 2.
    Araki, G. and S. Huzinaga: Theory of Absorption Spectra of Unsymmetrical Cyanines. J. Chem. Physics 22, 1141 (1954)Google Scholar
  3. 3.
    Araki, G. and T. Murai: Molecular Structure and Absorption Spectra of Carotenoids. Progr. Theor. Phys. (Kyoto) 8, 639 (1952).Google Scholar
  4. 4.
    Theory of Absorption Spectra of Carotenoids According to TomonagaGas Model of jr Electrons. J. Chem. Physics 20, 1661 (1952)Google Scholar
  5. 5.
    Theory of Absorption Spectra of Catacondensed Hydrocarbons 445 According to Piatt’s Circular Model of Free Electrons. J. Chem. Physics 22, 954 (1954)Google Scholar
  6. 6.
    Auskäps, J.: Quantitative Untersuchungen über die Absorptionsspektren organischer Farbstoffe. Acta Univ. Latviensis (Chem. Ser.) 1, 279 (1930) [Chem. Zbl. 1931 1, 2588 ].Google Scholar
  7. a. Bär, F., W. Huber, H. Martin, G. Handschig and H. Kuhn: Nature of the Free Electron Model. The Case of the Polyenes and Poly acetylenes. J. Chem. Physics (in print).Google Scholar
  8. 7.
    Barrett, P. A., R. P. Linstead, F. G. Rundall and G. A. P. Tuey: Phthalocyanines and Related Compounds. Part XIX. Tetrabenzporphin, Tetrabenzmonoazaporphin and their Metallic Derivatives. J. Chem. Soc. ( London ) 1940, 1079.Google Scholar
  9. 8.
    Barriol, J. et S. Nikitine: Théorie du modèle métallique comportant des ramifications. Application au naphtalène. J. phys. radium 15, 426 (1954).Google Scholar
  10. 9.
    Barrow, G. M.: Chemical Bond: A OneDimensional Square Well-Type Model. J. Chem. Physics 26, 558 (1957).Google Scholar
  11. 10.
    Basu, S.: Free Electron Network Model for Cyanines and Diphenyl Polyenes. J. Chem. Physics 22, 1270 (1954).Google Scholar
  12. 11.
    Basu, S.: Nitrogen Electronegativity Correction in Free Electron Network Theory. J. Chem. Physics 22, 1623 (1954).Google Scholar
  13. 12.
    Basu, S.: Free Electron Model for Tropolone. J. Chem. Physics 22, 1776 (1954)Google Scholar
  14. 13.
    Basu, S.: Free Electron Treatment of the Orientation of Substituents in Aromatic Molecules. J. Chem. Physics 22, 1952 (1954)Google Scholar
  15. 14.
    Bayliss, N. S.: A “Metallic” Model for the Spectra of Conjugated Polyenes. J. Chem. Physics 16, 287 (1948).Google Scholar
  16. 15.
    Bayliss, N. S.: The Potential Energy in Conjugated Polyenes and the Effective Nuclear Charge of the Carbon Atom. J. Chem. Physics 17, 1353 (1949)Google Scholar
  17. 16.
    Bayliss, N. S.: Conjugated Compounds. II. Simple PotentialEnergy Functions, Absorption Spectra, and Ionization in Linear Polyenes. Austral. J. Sei. Res. A 3, 109 (1950).Google Scholar
  18. 17.
    Bayliss, N. S.: Spectroscopy. Annu. Rev. physical Chem. 3, 229 (1952).Google Scholar
  19. 18.
    Bayliss, N. S.: The Free-Electron Approximation for Conjugated Compounds. Quart. Rev. Chem. Soc. (London) 6, 319 (1952).Google Scholar
  20. 19.
    Bohlmann, F.: Konstitution und Lichtabsorption, VI. Mitt.: Zur Deutung von PolyacetylenSpektren, sowie Darstellung von Bis-tert.-butyl-decapentain (1,3,5,7,9). Chem. Ber. 86, 63 (1953)Google Scholar
  21. 20.
    Polyacetylene, IV. Mitt.: Darstellung von Di-tert.-butylpolyacetylenen. Chem. Ber. 86, 657 (1953).Google Scholar
  22. 21.
    Bolton, H. C.: The Electrical Polarizability of Conjugated Molecules: The Use of FreeElectron Orbitals. Trans. Faraday Soc. 50, 1265 (1954)Google Scholar
  23. 22.
    Bonnett, R., J. R. Cannon, A. W. Johnson and A. Todd: Chemistry of the Vitamin Ba Group. Part IV. The Isolation of Crystalline Nucleotidefree Degradation Products. J. Chem. Soc. ( London ) 1957, 1148.Google Scholar
  24. 23.
    Brockway, L. O.: The ElectronDiffraction Investigation of the Molecular Structure of Cyanogen and Diacetylene (with a Note on Chlorine Dioxide). Proc. Nat. Acad. Sei. (USA) 19, 868 (1933)Google Scholar
  25. 24.
    Brooker, L. G. S. and W. T. Simpson: Spectroscopy. Annu. Rev. physical Chem. 2, 121 (1951).Google Scholar
  26. 25.
    Brooker, L. G. S. and P. W. Vittum: A Century of Progress in the Synthesis of Dyes for Photography. J. Photogr. Sei. 5, 71 (1957)Google Scholar
  27. 26.
    Clar, E.: Aromatic Hydrocarbons. Part LVIII. The Structure of Azulene. J. Chem. Soc. ( London ) 1950, 1823.Google Scholar
  28. 27.
    Coulson, C. A.: FreeElectron Wave Functions for Conjugated Molecules. Proc. Phys. Soc. (London) A 66, 652 (1953).Google Scholar
  29. 28.
    Note on the Applicability of the FreeElectron Network Model to Metals. Proc. Phys. Soc. (London) A 67, 608 (1954)Google Scholar
  30. 29.
    Dale, J.: Empirical Relationships of the Minor Bands in the Absorption Spectra of Polyenes. Acta Chem. Scand. 8, 1235 (1954)Google Scholar
  31. 30.
    The FreeElectron Model, “Overtone” Bands, and Vibrational Structure in Absorption Spectra of Polyenes and Polyenynes. Acta Chem. Scand. 11, 265 (1957)Google Scholar
  32. 31.
    Infrared Absorption Spectra of ortho and paralAnked. Polyphenyls. Acta Chepi. Scand. 11, 640 (1957).Google Scholar
  33. 32.
    Ultraviolett Absorption Spectra of ortho and paralAnke Polyphenyls. Acta Chem. Scand. 11, 650 (1957).Google Scholar
  34. 33.
    Ultraviolet Absorption Spectra of Chain Molecules Consisting of Alternating Benzene Rings and Ethylenic Bonds. Acta Chem. Scand. 11, 971 (1957)Google Scholar
  35. 34.
    Dale, J. and L. Zechmeister: On the Stereochemistry of Azines: Cinnamalazine and Phenylpentadienalazine. J. Amer. Chem. Soc. 75, 379 (1953).Google Scholar
  36. 35.
    Dewar, M. J. S.: The Electronic Theory of Organic Chemistry, pp. 311–312. Oxford: Clarendon Press. 1949.Google Scholar
  37. 35a.
    and H. C. LonguetHiggins: The Electronic Spectra of Aromatic Molecules: I Benzenoid Hydrocarbons. Proc. Phys. Soc. (London) A 67, 795 (1954)Google Scholar
  38. 36.
    Eichhorn, E. L.: Thesis, Univ. Amsterdam, 1956.Google Scholar
  39. 37.
    Fierz-David, H. E.: Künstliche organische Farbstoffe. Berlin: Springer. 1926.Google Scholar
  40. 38.
    Förster, TH.: Molecular Electronic Spectroscopy. Annu. Rev. physical Chem. 8, 331 (1957)Google Scholar
  41. 39.
    Frost, A. A.: Delta Potential Function Model for Electronic Energies in Molecules. J. Chem. Physics 22, 1613 (1954).Google Scholar
  42. 40.
    Delta Function Model. I. Electronic Energies of Hydrogen-Like Atoms and Diatomic Molecules. J. Chem. Physics 25, 1150 (1956).Google Scholar
  43. 41.
    Frost, A. A. and B. Musulin: A Mnemonic Device for Molecular Orbital Energies. J. Chem. Physics 21, 572 (1953)Google Scholar
  44. 41a.
    Gouterman, M.: Study of the Effects of Substitution on the Absorption Spectra of Porphin. J. Chem. Physics 30, 1139 (1959).Google Scholar
  45. 42.
    Griffith, J. S.: Note on the Generalized FreeElectron Model of Conjugated Polycyclic Hydrocarbons. J. Chem. Physics 21, 174 (1953).Google Scholar
  46. 43.
    A Free Electron Theory of Conjugated Molecules. Part I. Polycyclic Hydrocarbons. Trans. Faraday Soc. 49, 345 (1953).Google Scholar
  47. 44.
    Ham, N. S. and K. Ruedenberg: Electronic Interaction in the Free Electron Network Model for Conjugated Systems. I. Theory. J. Chem. Physics 25, 1 (1956).Google Scholar
  48. 45.
    Electronic Interaction in the Free-Electron Network Model for Conjugated Systems. II. Spectra of Aromatic Hydrocarbons. J. Chem. Physics 25, 13 (1956).Google Scholar
  49. 46.
    Hodgkin, D. C.: Xray Analysis and the Structure of Vitamin B12. Fortschr. Chem. organ. Naturstoffe 15, 167 (1958).Google Scholar
  50. 47.
    Hornig, J. F., Walter Huber and H. Kuhn: Nature of the Free Electron Approximation: The Simple Example of the H2+ Ion. J. Chem. Physics 25, 1296 (1956).Google Scholar
  51. 48.
    Huber, Walter, J, F. Hornig und H. Kuhn: Über den Potentialverlauf entlang der Molekülkette im verfeinerten eindimensionalen Elektronengas modell. Untersuchungen am Beispiel des Wasserstoffmolekülions. Z. physik. Chem. Neue Folge 9, 1 (1956).Google Scholar
  52. 49.
    Huber, Wernhard, H. Kuhn und Walter Huber: Elektronengasmodell zur quantitativen Deutung der Lichtabsorption von organischen Farbstoffen. II. Teil C. Farbstoffe vom Acridintypus. Helv. Cim. Acta 36, 1597 (1953)Google Scholar
  53. 50.
    Huzinaga, S. and T. Hasino: Electronic Energy Levels of Polyene Chains. Progr. Theor. Phys. (Kyoto) 18, 649 (1957)Google Scholar
  54. 51.
    Inhoffen, H. H., F. Bohlmann, J. H. Aldag, S. Bork und G. Leibner: Synthesen in der CarotinoidReihe, XXI. Kondensation von Carotinoid ketonen und aldehyden mit Diacetylen; zugleich eine weitere Synthese des iöCarotins. Liebigs Ann. Chem. 573, 1 (1951) (s. insbes. S. 8).Google Scholar
  55. 52.
    Jaffé, H. H.: Free Electron Wave Functions as Approximations to MO Wave Functions for Conjugated Molecules. J. Chem. Physics 20, 1646 (1952).Google Scholar
  56. 53.
    The Use of Free Electron Model Wave Functions in the Derivation and Representation of Lcao MO Wave Functions of Conjugated Molecules. J. Chem. Physics 21, 1287 (1953)Google Scholar
  57. 54.
    Kauzmann, W.: Quantum Chemistry. An Introduction. New York: Academic Press. 1957.Google Scholar
  58. 55.
    Kotani, M., Y. Mizuno, K. Kayama and H. Yoshizumi: Quantum Theory of Electronic Structure of Molecules. Annu. Rev. physical Chem. 9, 245 (1958).Google Scholar
  59. 56.
    Kuhn, H.: Elektronengasmodell zur quantitativen Deutung der Lichtabsorption von organischen Farbstoffen. I. Helv. Chim. Acta 31, 1441 (1948).Google Scholar
  60. 57.
    Kuhn, H.: Free Electron Model for Absorption Spectra of Organic Dyes. J. Chem. Physics 16, 840 (1948).Google Scholar
  61. 58.
    Kuhn, H.: A QuantumMechanical Theory of Light Absorption of Organic Dyes and Similar Compounds. J. Chem. Physics 17, 1198 (1949).Google Scholar
  62. 59.
    Kuhn, H.: Theoretische Deutung der Lichtabsorption organischer Farbstoffe. Z. Elektrochem. 53, 165 (1949).Google Scholar
  63. 60.
    Kuhn, H.: Quantenmechanische Behandlung von Farbstoffen mit verzweigtem Elektronengas. Helv. Chim. Acta 32, 2247 (1949)Google Scholar
  64. 61.
    Kuhn, H.: Lichtabsorption organischer Farbstoffe. Chimia 4, 203 (1950).Google Scholar
  65. 62.
    Kuhn, H.: Elektronengasmodell zur quantitativen Deutung der Lichtabsorption von organischen Farbstoffen. II. Teil A. Ermittlung der Intensität von Absorptionsbanden. Helv. Chim. Acta 34, 1308 (1951).Google Scholar
  66. 63.
    Kuhn, H.: Elektronengasmodell zur quantitativen Deutung der Lichtabsorption von organischen Farbstoffen. II. Teil B. Störung des Elektronengases durch Heteroatome. Helv. Chim. Acta 34, 2371 (1951)Google Scholar
  67. 64.
    Kuhn, H.: Chemische Bindung und Zustände von Elektronen in Molekülen. Experientia 9, 41 (1953)Google Scholar
  68. 65.
    Kuhn, H.: Lichtabsorption organischer Farbstoffe. (Neuere Ergebnisse der Elektronen gasmethode.) Chimia 9, 237 (1955)Google Scholar
  69. 66.
    Kuhn, H.: Note on the Branching Condition in the OneDimensional Free Electron Gas Model. J. Chem. Physics 22, 2098 (1954)Google Scholar
  70. 67.
    Kuhn, H.: Verfeinertes eindimensionales Elektronengasmodell. Verzweigungsbedingung und Orthogonalitätsrelation. Z. Naturforsch. 9 a, 989 (1954).Google Scholar
  71. 68.
    Kuhn, H.: Physical Basis of the FreeElectron Gas Model of Branched Molecules. J. Chem. Physics 25, 293 (1956).Google Scholar
  72. 69.
    Kuhn, H.: Die Verzweigungsbedingung in der Elektronengasmethode. Z. Elektrochem. 58, 219 (1954)Google Scholar
  73. 70.
    Kuhn, H.: Zweidimensionales Elektronengasmodell organischer Farbstoffe. Angew. Chem. 69, 239 (1957)Google Scholar
  74. 71.
    Kuhn, H.: The Electron Gas Theory of the Color of Natural and Artifical Dyes: Problems and Principles. Fortschr. Chem. organ. Naturstoffe 16, 169 (1958).Google Scholar
  75. 72.
    Kuhn, H.: Neuere Untersuchungen über das Elektronengasmodell organischer Farbstoffe. Angew. Chem. 71, 93 (1959)Google Scholar
  76. 73.
    Kuhn, H. und Walter Huber: Elektronengasmodell organischer Farbstoffe. Feldeffekt als Ursache von Intensitätsanomalien bei Absorptionsbanden. Helv. Chim. Acta 42, 363 (1959).Google Scholar
  77. 74.
    Lichtabsorption der Porphine und cs Polyene. Angew. Chem. 71, 140 (1959).Google Scholar
  78. 75.
    Kuhn, H., Walter Huber et F. BÄR: Modèle de l’électron libre amélioré à une dimension. Position et structure des bandes d’absorption des polyynes et polyènes. Longueur des liaisons. Calcul des fonctions d’onde moléculaires, p. 179. Paris: Centre National Recherche Sei. 1958.Google Scholar
  79. 76.
    Kuhn, H., Walter Huber, G. Handschig, H. Martin, F. Schäfer and F. Bär: Nature of the Free Electron Model. The Simple Case of the Symmetric Polymethines. J. Chem. Physics (in print).Google Scholar
  80. 77.
    Kuhn, W.: Über das Absorptionsspektrum der Polyene. Helv. Chim. Acta 31, 1780 (1948).Google Scholar
  81. 78.
    Labhart, H.: FE Theory Including an Elastic a Skeleton. I. Spectra and Bond Lengths in Long Polyenes. J. Chem. Physics 27, 957 (1957)Google Scholar
  82. 79.
    Labhart, H.: Fe Theory Including an Elastic a Skeleton. II. Changes of Molecule Dimensions due to the Optical Excitation. J. Chem. Physics 27, 963 (1957).Google Scholar
  83. 80.
    Lennard-Jones, J. E.: The Electronic Structure of Some Polyenes and Aromatic Molecules. I. The Nature of the Links by the Method of Molecular Orbitals. Proc. Roy. Soc. (London) A 158, 280 (1937).Google Scholar
  84. 81.
    Lichten, W.: The Free-Electron Theory and the Virial Theorem. J. Chem. Physics 22, 1278 (1954).Google Scholar
  85. 82.
    LonguetHiggins, H. C.: Recent Developments in Molecular Orbital Theory. Adv. Chem. Physics 1, 239 (1958).Google Scholar
  86. 83.
    LonguetHiggins, H. C. and G. W. Wheland: Theories of Valence. Annu. Rev. physical Chem. 1, 133 (1950).Google Scholar
  87. 84.
    Michaelis, L. and S. Granick: Metachromasy of Basic Dyestuffs. J. Amer. Chem. Soc. 67, 1212 (1945).Google Scholar
  88. 85.
    Moffitt, W.: Configurational Interaction in Simple Molecular Orbital Theory. J. Chem. Physics 22, 1820 (1954).Google Scholar
  89. 86.
    Mulliken, R. S. and C. A. Rieke: Molecular Electronic Spectra, Dispersion and Polarization. The Theoretical Interpretation and Computation of Oscillator Strengths and Intensities. Rep. Progr. Physics 8, 231 (1941)Google Scholar
  90. 87.
    Nikitine, S. et S. G. EL Komoss: Étude du modèle métallique à trois dimensions. J. chim. phys. 51, 129 (1954).Google Scholar
  91. 88.
    Calcul du spectre d’absorption de quelques colorants dans l’approximation du modèle métallique tenant compte des ramifications des chaînes métalliques. J. phys. radium 15, 536 (1954).Google Scholar
  92. 89.
    Olszewski, S.: Remarks on the Theory of Absorption Spectra of Symmetrical Cyanine Dyes and Polyenes. J. Chem. Physics 26, 1205 (1957)Google Scholar
  93. 90.
    Ooshika, Y,: A Semiempirical Theory of the Conjugated Systems. I. General Formulation. J. Phys. Soc. Japan 12, 1238 (1957).Google Scholar
  94. 91.
    Ooshika, Y.:A Semiempirical Theory of the Conjugated Systems. II. Bond Alternation in Conjugated Chains. J. Phys. Soc. Japan 12, 1246 (1957).Google Scholar
  95. 91a.
    Pariser, R.: Theory of the Electronic Spectra and Structure of the Polyacenes and of Alternant Hydrocarbons. J. Chem. Physics 24, 250 (1956).Google Scholar
  96. 92.
    Parr, R. G. and F. O. Ellison: The Quantum Theory of Valence. Annu. Rev. physical Chem. 6, 171 (1955)Google Scholar
  97. 93.
    Pauling, L.: The Nature of the Chemical Bond ad the Structure of Molecules and Crystals. Ithaca, N. Y.: Cornell Univ. Press. 1945.Google Scholar
  98. 94.
    Pauling, L., H. D. Springall and K. J. Palmer: The Electron Diffraction Investigation of Methylacetylene, Dimethylacetylene, Dimethyldiacetylene, Methyl Cyanide, Diacetylene, and Cyanogen. J. Amer. Chem. Soc. 61, 927 (1939).Google Scholar
  99. 95.
    Perkampus, H. H.: Die Berechnung der Lichtabsorption der Acene mit Hilfe des verzweigten Elektronengasmodells von H. Kuhn. Z. Naturforsch. 7 a, 594 (1952).Google Scholar
  100. 96.
    Pitzer, K. S.: Quantum Chemistry. New York: PrenticeHall. 1953.Google Scholar
  101. 97.
    Platt, J. R.: Classification of Spectra of CataCondensed Hydrocarbons. J. Chem. Physics 17, 484 (1949).Google Scholar
  102. 98.
    Platt, J. R.: Electronic Structure and Excitation of Polyenes and Porphyrins. In: A. Hollaender, Radiation Biology, Vol. III, p. 71. New York: McGraw Hill. 1956.Google Scholar
  103. 99.
    Platt, J. R.: Wavelength Formulas and Configuration Interaction in Brooker Dyes and Chain Molecules. J. Chem. Physics 25, 80 (1956).Google Scholar
  104. 100.
    Platt, J. R.: Molecular Orbital Predictions of Organic Spectra. J. Chem. Physics 18, 1168 (1950).Google Scholar
  105. 101.
    Platt, J. R.: Isoconjugate Spectra and Variconjugate Sequences. J. Chem. Physics 19, 101 (1951)Google Scholar
  106. 102.
    Platt, J. R.: Spectroscopic Moment: A Parameter of Substituent Groups Determining Aromatic Ultraviolet Intensities. J. Chem. Physics 19, 263 (1951).Google Scholar
  107. 103.
    Platt, J. R.: FreeElectron Network Model for Conjugated Systems. III. A Demonstration Model Showing Bond Order and “Free Valence” in Conjugated Hydrocarbons. J. Chem. Physics 21, 1597 (1953).Google Scholar
  108. 104.
    Platt, J. R.: The Box Model and Electron Densities in Conjugated Systems. J. Chem. Physics 22, 1448 (1954).Google Scholar
  109. 105.
    Pople, J. A.: The MolecularOrbital and EquivalentOrbital Approach to Molecular Structure. Quart. Revs. Chem. Soc. (London) 11, 273 (1957)Google Scholar
  110. 106.
    Ruedenberg, K.: Free-Electron Network Model for Conjugated Systems. V. Energies and Electron Distributions in the FE MO Model and in the LCAO MO Model. J. Chem. Physics 22, 1878 (1954).Google Scholar
  111. 107.
    Ruedenberg, K. and C. W. Scherr: FreeElectron Network Model for Conjugated Systems. I. Theory. J. Chem. Physics 21, 1565 (1953)Google Scholar
  112. 108.
    Sandoval, A. and L. Zechmeister: Some Spectroscopic Changes Connected with the Stereoisomerization of Diphenylbutadiene. J. Amer. Chem. Soc. 69, 553 (1947)Google Scholar
  113. 109.
    Scherr, C. W.: Free-Electron Network Model for Conjugated Systems. IV. J. Chem. Physics 21, 1413 (1953).Google Scholar
  114. 110.
    Scherr, C. W.: Free-Electron Network Model for Conjugated Systems. II. Numerical Calculations. J. Chem. Physics 21, 1582 (1953).Google Scholar
  115. 111.
    Schomaker, V. and L. Pauling: The Electron Diffraction Investigation of the Structure of Benzene, Pyridine, Pyrazine, Butadiene1,3, Cyclopentadiene, Furan, Pyrrole, and Thiophene. J. Amer. Chem. Soc. 61, 1769 (1939)Google Scholar
  116. 112.
    Sheppard, S. E. and A. L. Geddes: Effect of Solvents upon the Absorption Spectra of Dyes. IV. Water as Solvent: A Common Pattern. J. Amer. Chem. Soc. 66, 1995 (1944)Google Scholar
  117. 113.
    Simpson, W. T.: Electronic States of Organic Molecules. J. Chem. Physics 16, 1124 (1948).Google Scholar
  118. 114.
    Simpson, W. T.: On the Theory of the jrElectron System in Porphines. J. Chem. Physics 17, 1218 (1949).Google Scholar
  119. 115.
    Sponer, H.: Electronic Spectroscopy. Annu. Rev. physical Chem. 6, 193 (1955).Google Scholar
  120. 116.
    Sponer, H. and E. Teller: Electronic Spectra of Polyatomic Molecules. Rev. Mod. Physics 13, 75 (1941).Google Scholar
  121. 117.
    Staab, H. A.: Einführung in die theoretische organische Chemie. Weinheim: Verlag Chemie. 1959.Google Scholar
  122. 118.
    Sturdivant, J. H. and W. G. Sly: Private communication. Cf. W. G. Sly: A Preliminary Report on the Crystalstructure Determination of 15,15’ Dehydrocarotene. Acta Crystallogr. 8, 115 (1955).Google Scholar
  123. 119.
    Takizawa, E. I. et N. Imai: Note sur la corrélation des électrons n en colorants organiques. I. et II. Mem. Fac. Engin. Nagoya Univ. 4, 216 (1952); 5, 59 (1953).Google Scholar
  124. 120.
    Walsh, A. D.: Far UltraViolet Spectra, Ionisation Potentials, and Their Significance in Chemistry. Quart. Revs. Chem. Soc. (London) 2, 73 (1948).Google Scholar
  125. 120a.
    Walsh, A. D.: Theory of Molecular Structure and Spectra. Annu. Rev. physical Chem. 5, 163 (1954)Google Scholar
  126. 120b.
    Wassermann, A.: Mode of Proton Addition to Conjugated Double Bonds. J. Chem. Soc. (London) 1959, 979. For related papers by the same author cf. J. Chem. Soc. (London) 1954, 4329; 1955, 581; 1958, 1014, 3228; 1959, 983, 986.Google Scholar
  127. 121.
    Wierl, R.: Elektronenbeugung und Molekülbau. II. Ann. Physik [5] 13, 453 (1932).Google Scholar
  128. 122.
    Wizinger, R.: Mono and Polyatomic Chromophores. Mededel. Vlaamse Chem. Ver. 19, 65 (1957) (see esp. p. 94).Google Scholar
  129. 123.
    Zanker, V.: Über den Nachweis definierter reversibler Assoziate (reversible Polymerisate) des Acridinorange durch Absorptions und Fluoreszenzmessungen in wäßriger Lösung. Z. physik. Chem. A 199, 225 (1952).Google Scholar
  130. 124.
    Zechmeister, L.: cistrans Isomerization and Stereochemistry of Carotenoids and Diphenylpolyenes. Chem. Revs. 34, 267 (1944).Google Scholar
  131. 125.
    Zechmeister, L.: Some Stereochemical Aspects of Polyenes. Experientia 10, 1 (1954)Google Scholar
  132. 126.
    Zechmeister, L.: Some in vitro Conversions of Naturally Occurring Carotenoids. Fortschr. Chem. organ. Naturstoffe 15, 31 (1958).Google Scholar
  133. 127.
    Zechmeister, L. and A. L. Lerosen: Contribution to the Stereochemistry of Diphenylpolyenes. Science (Washington) 95, 587 (1942).Google Scholar
  134. 128.
    Stereoisomeric Diphenyloctatetraenes. J. Amer. Chem. Soc. 64, 2755 (1942).Google Scholar
  135. 129.
    Zechmeister, L., A. L. Lerosen, W. A. Schroeder, A. Polgar and L. Pauling: Spectral Characteristics and Configuration of Some Stereoisomeric Carotenoids Including Prolycopene and Proycarotene. J. Amer. Chem. Soc. 65, 1940 (1943)Google Scholar
  136. 130.
    Zechmeister, L. and E. F. Magoon: Spectral Maxima of Stereoisomeric Polyenes. Chem. and Ind. 1957, 431.Google Scholar
  137. 131.
    Zechmeister, L. and J. H. Pinckard: On Stereoisomerism in the Cyanine Dye Series. Experientia 9, 16 (1953).Google Scholar
  138. 132.
    Zechmeister, L. and A. Polgar: cistrans Isomerization and Spectral Characteristics of Carotenoids and Some Related Compounds. J. Amer. Chem. Soc. 65, 1522 (1943).Google Scholar
  139. 133.
    cistrans Isomerization and czsPeak Effect in the aCarotene Set and in Some Other Stereoisomeric Sets. J. Amer. Chem. Soc. 66, 137 (1944)Google Scholar
  140. 134.
    Zechmeister, L. and W. A. Schroeder: On the Occurrence of Stereoisomeric Carotenoids in Nature. Science (Washington) 94, 609 (1941).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1959

Authors and Affiliations

  • Hans Kuhn
    • 1
  1. 1.Marburg a. d. LahnGermany

Personalised recommendations