Advertisement

Abstract

The conspicuous red color of the blood has no doubt been a source of wonder, interest, and curiosity ever since it was first observed by man. It followed much later that hemoglobin, the cause of the red color, is neatly packaged in the red blood cells apart from the other constituents of the blood and that it serves as a carrier for oxygen in the body. Not only the oxygen-carrying function of hemoglobin has been the subject of much research but almost every chemical or physiological topic related to hemoglobin has received attention until, at the present time, the literature on hemoglobin is almost overwhelming in amount. No small part of this vast literature has come during the last ten years, since the discovery by Pauling, Itano, Singer, and Wells (99) of the first abnormal human hemoglobin which is now termed sickle-cell anemia hemoglobin or hemoglobin S. This discovery gave a new impetus to the study of hematological disorders for here, for the first time, was a pathological state unquestionably associated with a molecule that is slightly different in some way from the normal one. Because of this difference it is unable to function properly: a molecular disease had been detected. The detection of other abnormal hemoglobins soon followed so that today almost all the letters of the alphabet have been used to designate the various abnormal hemoglobins.

Keywords

Amino Acid Composition Sulfhydryl Group Fetal Hemoglobin Human Hemoglobin Hemoglobin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adair, G. S.: A Comparison of the Molecular Weights of the Proteins. Proc. Cambridge Phil. Soc. 1, 75 (1924).Google Scholar
  2. 2.
    Akabori, S., K. Ohno, T. Ikenaka, Y. Okada, H. Hanafusa, I. Haruna, A. Tsugita, K. Sugae and T. Matsushima: Hydrazinolysis of Peptides and Proteins. II. Fundamental Studies on the Determination of the Carboxyl Ends of Proteins. Bull. Chem. Soc. Japan 29, 507 (1956).CrossRefGoogle Scholar
  3. 3.
    Allen, D. W., K. F. Guthe and J. Wyman, Jr.: Further Studies on the Oxygen Equilibrium of Hemoglobin. J. Biol. Chem. 187, 393 (1950).Google Scholar
  4. 4.
    Allen, D. W. and W. A. Schroeder: A Comparison of the Phenylalanine Content of the Hemoglobin of Normal and Phenylketonuric Individuals: Determination by Ion Exchange Chromatography. J. Clin. Investigation 36, 1343 (1957)CrossRefGoogle Scholar
  5. 5.
    Allen, D. W., W. A. Schroeder and J. Balog: Observations on the Chromatographic Heterogeneity of Normal Adult and Fetal Human Hemoglobin: A Study of the Effects of Crystallization and Chromatography on the Heterogeneity and Isoleucine Content. J. Amer. Chem. Soc. 80, 1628 (1958).CrossRefGoogle Scholar
  6. 6.
    Allison, A. C.: Notation for Hemoglobin Types and Genes Controlling Their Synthesis. Science (Washington) 122, 640 (1955).CrossRefGoogle Scholar
  7. 7.
    Allison, A. C. and R. Cecil: The Thiol Groups of Normal Adult Human Haemoglobin. Biochemic. J. 69, 27 (1958).Google Scholar
  8. 8.
    Anonymous: Statement Concerning a System of Nomenclature for the Varieties of Human Hemoglobin. Blood 8, 386 (1953).Google Scholar
  9. 9.
    Anson, M. L. and A. E. Mirsky: Protein Coagulation and its Reversal. The Preparation of Insoluble Globin, Soluble Globin, and Heme. J. Gen. Physiol. 13, 469 (1929/30).Google Scholar
  10. 10.
    Bangham, A. D. and H. Lehmann: “Multiple” Haemoglobins in the Horse. Nature (London) 181, 267 (1958).CrossRefGoogle Scholar
  11. 11.
    Barrett, H. W. and W. A. Schroeder: unpublished.Google Scholar
  12. 12.
    Beaven, G. H., H. Hoch and E. R. Holiday: The Haemoglobins of the Human Foetus and Infant. Electrophoretic and Spectroscopic Differentiation of Adult and Foetal Types. Biochemic. J. 49, 374 (1951).Google Scholar
  13. 13.
    Benesch, R. E., H. A. Lardy and R. Benesch: The Sulfhydryl Groups of Crystalline Proteins. I. Some Albumins, Enzymes, and Hemoglobins. J. Biol. Chem. 216, 663 (1955)Google Scholar
  14. 14.
    Bernhart, F. W. and L. Skeggs: The Iron Content of Crystalline Human Hemoglobin. J. Biol. Chem. 147, 19 (1943).Google Scholar
  15. 15.
    Betke, K.: Der menschUche rote Blutfarbstoff bei Fetus und reifem Organismus. Berlin: Springer-Verlag. 1954Google Scholar
  16. 16.
    Bragg, W. L. and M. F. Perutz: The External Form of the Hemoglobin Molecule. II. Acta Crystallogr. 5, 323 (1952).CrossRefGoogle Scholar
  17. 17.
    Brown, H.: The Free Amino Groups and Terminal Dipeptides of Human Adult Hemoglobin. Arch. Biochem. Biophys. 61, 241 (1956).CrossRefGoogle Scholar
  18. 18.
    The Sulfur Distribution and Some Cysteic Acid Peptides of Human Adult Hemoglobin. Arch. Biochem. Biophys. 67, 256 (1957).Google Scholar
  19. 19.
    Cabannes, R. et CH. Serain: Étude électrophorétique des hémoglobines des Mammifères domestiques d’Algérie. C. R. Séances Soc. Biol. 149, 1193 (1955)Google Scholar
  20. 20.
    Chernoff, A. I.: The Alkali Denaturation Procedures. In: Conference on Hemoglobin. Nat. Acad. Sci., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 172.Google Scholar
  21. 21.
    Immunologie Aspects of the Human Hemoglobin. In: Conference on Hemoglobin. Nat. Acad. Sci., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 179.Google Scholar
  22. 22.
    Clegg, M. and W. A. Schroeder: J. Amer. Chem. Soc. (1959)Google Scholar
  23. 22a.
    Cole, R. D., W. H. Stein and S. Moore: On the Cysteine Content of Human Hemoglobin. J. Biol. Chem. 233, 1359 (1958).Google Scholar
  24. 23.
    Conference on Hemoglobin. Nat. Acad. Sci., National Research Council, Washington, D. C., Publication No. 557, 1958.Google Scholar
  25. 24.
    Cook, J. L. and M. Morrison: Ion Exchange Chromatography of Human Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 15, 235 (1956).Google Scholar
  26. 25.
    Coryell, C. D. and L. Pauling: A Structural Interpretation of the Acidity of Groups Associated with the Hemes of Hemoglobin and Hemoglobin Derivatives. J. Biol. Chem. 132, 769 (1940)Google Scholar
  27. 26.
    Craig, L. C., T. P. King and A. Stracher: Dialysis Studies. II. Some Experiments Dealing with the Problem of Selectivity. J. Amer. Chem. Soc. 79, 3729 (1957)CrossRefGoogle Scholar
  28. 27.
    Craig, L. C., W. Königsberg, A. Stracher and T. P. King: The Characterization of Lower Molecular Weight Proteins by Dialysis. In: A. Neuberger, Symposium on Protein Structure, p. 104. New York: Wiley and Sons. 1958.Google Scholar
  29. 28.
    Cullis, A. F., H. M. Dintzis and M. F. Perutz: X-Ray Analysis of Haemoglobin. In: Conference on Hemoglobin. Nat. Acad. Sei., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 50.Google Scholar
  30. 29.
    Derrien, Y.: Studies on the Heterogeneity of Adult and Fetal Hemoglobins by Salting-out, Alkali Denaturation and Moving Boundary Electrophoresis. In: Conference on Hemoglobin. Nat. Acad. Sei., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 183.Google Scholar
  31. 30.
    Dickman, S. R. and I. H. Moncrief: Primary Amide Groups of Human Hemoglobin. Proc. Soc. exp. Biol. Med. 77, 631 (1951).Google Scholar
  32. 31.
    Drabkin, D. L.: Metabolism of the Hemin Chromoproteins. Physiol. Rev. 31, 345 (1951).Google Scholar
  33. 32.
    Drabkin, D. L.: Symposium on Molecular Heterogeneity of Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 740–773 (1957)Google Scholar
  34. 33.
    Heredity and Environment in Structure of Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 740 (1957).Google Scholar
  35. 34.
    Drescher, H. und W. Künzer: Der Blutfarbstoff der menschlichen Feten. Klin. Wschr. 32, 92 (1954).Google Scholar
  36. 35.
    Dustin, J. P., G. Schapira, J. C. Dreyfus et O. Hestermans-Medard: La composition en acides aminés de l’hémoglobine foetale humaine. C. R. Séances Soc. Biol. 148, 1207 (1954).Google Scholar
  37. 36.
    Eastman, N. J.: Obstetrics. loth ed., p. 168. New York: Appleton-Century- Crofts. 1950.Google Scholar
  38. 37.
    Ferry, R. M. and A. A. Green: Studies in the Chemistry of Hemoglobin. III. The Equilibrium between Oxygen and Hemoglobin and its Relation to Changing Hydrogen Ion Activity. J. Biol. Chem. 81, 175 (1929)Google Scholar
  39. 38.
    Field, E. O. and J. R. P. O’Brien: Dissociation of Human Haemoglobin at Low pH. Biochemic. J. 60, 656 (1955).Google Scholar
  40. 39.
    George, P. and R. L. J. Lyster: A Survey of the Evidence for and against a Crevice Configuration for the Heme in Hemoglobin. In: Conference on Hemoglobin. Nat. Acad. Sei., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 33.Google Scholar
  41. 40.
    Gutter, F. J., H. A. Sober and E. A. Peterson: The Effect of Mercaptoethanol and Urea on the Molecular Weight of Hemoglobin. Arch. Biochem. Biophys. 62, 427 (1956).CrossRefGoogle Scholar
  42. 41.
    Halbrecht, I. and C. Klibanski: Identification of a New Normal Embryonic Haemoglobin. Nature (London) 178, 794 (1956).CrossRefGoogle Scholar
  43. 42.
    Halbrecht, I., C. Klibanski, H. Brzoza and M. Lahav: Hemoglobins and the Serum Protein Fractions in Early Embryonic Life. Amer. J. Clin. Pathol. 29, 340 (1958) [Chem. Abstr. 52, 130, 61 (1958)].Google Scholar
  44. 43.
    Hasserodt, U. and M. Clegg: unpublished.Google Scholar
  45. 44.
    Hasserodt, U. and J. Vinograd: Dissociation of Human Carbonmonoxy- hemoglobin at High pH. Proc. Nat. Acad. Sei. (USA) 45, 12 (1959)CrossRefGoogle Scholar
  46. 45.
    Hasserodt, U., J. Vinograd and R. Srinivasan: The Molecular Weight of Human Hemoglobin. J. Amer. Chem. Soc. (in press).Google Scholar
  47. 46.
    Haurowitz, F. and R. L. Hardin: Respiratory Proteins. In: H. Neurath and K. Bailey, The Proteins, Vol. II A, p. 328. New York: Academic Press. 1954.Google Scholar
  48. 47.
    Havinga, E.: Comparison of the Phosphorus Content, Optical Rotation, Separation of Hemes and Globin, and Terminal Amino Acid Residues of Normal Adult Human Hemoglobin and Sickle Cell Anemia Hemoglobin. Proc. Nat. Acad. Sci. (USA) 39, 59 (1953).CrossRefGoogle Scholar
  49. 48.
    Hommes, F. A., A. Dozy and T. H. J. Huisman: Further Studies on the Cysteine-Cystine Content of the Foetal Human Haemoglobin. Biochemic. J. 68, 309 (1958)Google Scholar
  50. 49.
    Hommes, F. A., J. Santema-Drinkwaard and T. H. J. Huisman: The Sulfhydryl Groups of Four Different Human Haemoglobins. Biochim. Biophys. Acta 20, 564 (1956).CrossRefGoogle Scholar
  51. 50.
    Huisman, T. H. J.: The Properties, Estimation Methods, Hematologic Features, and Some Other More General Aspects of Different Abnormal Human Hemoglobins. Clin. Chem. 3, 371 (1957)Google Scholar
  52. 51.
    Huisman, T. H. J.: Abnormal Hemoglobins. Chn. Chim. Acta 3, 201 (1958).CrossRefGoogle Scholar
  53. 52.
    Huisman, T. H. J. and A. Dozy: The Action of Carboxypeptidase on Different Human Haemoglobins. Biochim. Biophys. Acta 20, 400 (1956).CrossRefGoogle Scholar
  54. 53.
    Huisman, T. H. J. and J. Drinkwaard: The N-terminal Residues of Five Different Human Haemoglobins. Biochim. Biophys. Acta 18, 588 (1955).CrossRefGoogle Scholar
  55. 54.
    Huisman, T. H. J., J. H. P. Jonxis and A. Dozy: Is Foetal Haemoglobin Present in the Blood of Normal Human Adults? Biochim. Biophys. Acta 18, 576 (1955).CrossRefGoogle Scholar
  56. 55.
    Huisman, T. H. J., E. A. Martis and A. Dozy: Chromatography of Hemoglobin Types on Carboxymethylcellulose. J. Lab. Clin. Med. 52, 312 (1958) [Chem. Abstr. 52, 17361 (1958)].Google Scholar
  57. a. Hunt, J. A.: The Identity of the IX Chains of Adult and Foetal Human Haemoglobins. Nature (London) (in press).Google Scholar
  58. 56.
    Hunt, J. A. and V. M. Ingram: Abnormal Human Haemoglobins. II. The Chymotryptic Digestion of the Trypsin-Resistant “Core” of Haemoglobins A and S. Biochim. Biophys. Acta 28, 546 (1958).CrossRefGoogle Scholar
  59. 57.
    Hunt, J. A. and V. M. Ingram: Allelomorphism and the Chemical Differences of the Human Haemoglobins A, S, and C. Nature (London) 181, 1062 (1958).CrossRefGoogle Scholar
  60. 58.
    Hutchinson, W. D. and J. Vinograd: unpublished.Google Scholar
  61. 59.
    Ingbar, S. H. and E. H. Kass: Sulfhydryl Content of Normal Hemoglobin and Hemoglobin in Sickle-cell Anemia. Proc. Soc. exp. Biol. Med. 77, 74 (1951)Google Scholar
  62. 60.
    Ingram, D. J. E., J. F. Gibson and M. F. Perutz: Electron Spin Resonance in Myoglobin and Haemoglobin. Orientation of the four Haem Groups in Haemoglobin. Nature (London) 178, 905 (1956).CrossRefGoogle Scholar
  63. 61.
    Ingram, V. M.: Sulfhydryl Groups in Haemoglobins. Biochemic. J. 59, 653 (1955).Google Scholar
  64. 62.
    Ingram, V. M.: A Specific Chemical Difference Between the Globins of Normal Human and Sickle-cell Anaemia Haemoglobin. Nature (London) 178, 792 (1956).CrossRefGoogle Scholar
  65. 63.
    Ingram, V. M.: Gene Mutations in Human Haemoglobin: The Chemical Difference between Normal and Sickle Cell Haemoglobin. Nature (London) 180, 326 (1957)CrossRefGoogle Scholar
  66. 64.
    Ingram, V. M.: The Sulfhydryl Groups of Sickle-cell Haemoglobin. Biochemic. J. 65, 760 (1957).Google Scholar
  67. 65.
    Ingram, V. M.: Abnormal Human Haemoglobins. I. The Comparison of Normal Human and Sickle-cell Haemoglobins by “Fingerprinting”. Biochim. Biophys. Acta s, 539 (1958).Google Scholar
  68. 66.
    Ingram, V. M.: The Chemical Difference between Normal Human and Sickle Cell Anaemia Haemoglobins. In: Conference on Hemoglobin. Nat. Acad. Sci., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 233.Google Scholar
  69. a. Ingram, V. M.: Private communication.Google Scholar
  70. 67.
    Itano, H. A.: Human Hemoglobin. Science (Washington) 117, 89 (1953).CrossRefGoogle Scholar
  71. 68.
    Itano, H. A.: Clinical States Associated with Alteration of the Hemoglobin Molecule. Arch. Internal Med. 96, 287 (1955) [Chem. Abstr. 50, 2834 (1956)]Google Scholar
  72. 69.
    Itano, H. A.: The Hemoglobins. Annu. Rev. Biochem. 25, 331 (1956).CrossRefGoogle Scholar
  73. 70.
    Itano, H. A.: The Human Hemoglobins: Their Properties and Genetic Control. Adv. Protein Chem. 12, 215 (1957)CrossRefGoogle Scholar
  74. 71.
    Itano, H. A.: Asymmetric Dissociation and Hybridization of Hemoglobin Molecules. Correlation with Chemical and Genetic Subunits. Abstr., Meeting Amer. Chem. Soc., Sept. 1958.Google Scholar
  75. 72.
    Itano, H. A., W. R. Bergren and P. Sturgeon: The Abnormal Human Hemoglobins. Medicine 35, 121 (1956).CrossRefGoogle Scholar
  76. 73.
    Jones, R. T. and W. A. Schroeder: unpublished.Google Scholar
  77. 74.
    Jonxis, J. H. P.: Foetal Haemoglobin and Rh Antagonisms. In: F. J. W. Roughton and J. C. Kendrew, Haemoglobin, p. 261. London: Butterworths, and New York: Interscience Publ. 1949.Google Scholar
  78. 75.
    Jonxis, J. H. P. and T. H. J. Huisman: The Detection and Estimation of Fetal Hemoglobin by Means of the Alkali Denaturation Test. Blood 11, 1009 (1956).Google Scholar
  79. 76.
    Jope, E. M.: The Ultraviolet Spectral Absorption of Haemoglobins Inside and Outside the Red Blood Cell. In: F. J. W. Roughton and J. C. Kendrew, Haemoglobin, p. 205. London: Butterworths, New York: Interscience. 1949.Google Scholar
  80. 77.
    Jope, H. M. and J. R. P. O’Brien: Crystallization and Solubility Studies on Human Adult and Foetal Haemoglobins. In: F. J. W. Roughton and J. C. Kendrew, Haemoglobin, p. 269. London: Butterworths, and New York: Interscience Publ. 1949.Google Scholar
  81. 77a.
    Kauffmann, T. und F.-P. Boettcher: Bestimmung der C-terminalen Aminosäuren von Menschen-, Pferde- und Rinderhämoglobin. Z. Naturf. 136, 467 (1958).Google Scholar
  82. 78.
    Keilin, D.: A Comparative Study of Turacin and Haematin and its Bearing on Cytochrome. Proc. Roy. Soc. (London) 100 B, 129 (1926).Google Scholar
  83. 79.
    Kleinknecht, R.: Das Vorkommen der mittels Alkalidenaturierung unter-scheidbaren Hämoglobintypen Hb, Hbg und Hbg im Säuglingsalter. Monatsschr. Kinderheilk. 101, 360 (1953)Google Scholar
  84. a. Kon, H. and N. Davidson: Nuclear Magnetic Relaxation of Water Protons by Ferrihemoglobin and Ferrimyoglobin. J. Molecular Biol. (1959) (in press).Google Scholar
  85. 80.
    Körber, E.: Über Differenzen des Blutfarbstoffes. Dissert., Dorpat, 1866.Google Scholar
  86. 81.
    Kunkel, H. G., R. Ceppellini, O. Muller-Eberhard and J. Wolf: The Minor Basic Hemoglobin (Hb) Component in the Blood of Normal Individuals and Patients with Thalassemia. J. Clin. Investigation 36, 1615 (1957)CrossRefGoogle Scholar
  87. 82.
    Kunkel, H. G. and G. Wallenius: New Hemoglobin in Normal Adult Blood. Science (Washington) 122, 288 (1955).CrossRefGoogle Scholar
  88. 83.
    Künzer, W.: Human Embryo Haemoglobins. Nature (London) 179, 477 (1957).CrossRefGoogle Scholar
  89. 84.
    Küster, W. und G. F. Koppenhöfer: Über den Blutfarbstoff. Z. physiol. Chem. (Hoppe-Seyler) 170, 106 (1927).Google Scholar
  90. 85.
    Lamm, O. and A. Polson: The Determination of Diffusion Constants of Proteins by a Refractometric Method. Biochemic. J. 30, 528 (1936).Google Scholar
  91. 86.
    Lemberg, R. and J. W. Legge: Hematin Compounds and Bile Pigments: Their Constitution, Metabolism, and Function. New York: Interscience Publ. 1949CrossRefGoogle Scholar
  92. 87.
    Masri, M. S. and K. Singer: Studies on Abnormal Hemoglobins. XII. Terminal and Free Amino Groups of Various Types of Human Hemoglobins. Arch. Biochem. Biophys. 58, 414 (1955).CrossRefGoogle Scholar
  93. 88.
    Matsuda, G. and W. A. Schroeder: unpublished.Google Scholar
  94. 89.
    Matsuda, G., R. Shelton and W. A. Schroeder: unpublished.Google Scholar
  95. 90.
    Moore, D. H. and L. Reiner: Electrophoretic and Ultracentrifugal Analyses of Globin Components. J. Biol. Chem. 156, 411 (1944).Google Scholar
  96. 91.
    Morrison, D. B. and A. Hisey: The Carbon Monoxide Capacity, Iron, and Total Nitrogen of Dog Hemoglobin. J. Biol. Chem. 109, 233 (1935).Google Scholar
  97. 92.
    Morrison, M.: Discussion in: Conference on Hemoglobin. Nat. Acad. Sci., National Research Council, Washington, D. C., Publication No. 557, 1958, p. 166.Google Scholar
  98. 93.
    Morrison, M. and J. L. Cook: Chromatographic Fractionation of Normal Adult Oxyhemoglobin. Science (Washington) 122, 920 (1955).CrossRefGoogle Scholar
  99. 94.
    Murayama, M.: Titratable Sulfhydryl Groups of Normal and Sickle-cell Hemoglobins at 0° and 38°. J. Biol. Chem. 228, 231 (1957).Google Scholar
  100. 95.
    Titratable Sulfhydryl Groups of Hemoglobin C and Fetal Hemoglobin at 0° and 38°. J. Biol. Chem. 230, 163 (1958).Google Scholar
  101. 96.
    Patchornik, A., W. B. Lawson and B. Witkop: Selective Cleavage of Peptide Bonds. II. The Tryptophyl Peptide Bond and the Cleavage of Glucagon. J. Amer. Chem. Soc. 80, 4747 (1958).CrossRefGoogle Scholar
  102. 97.
    Pauling, L.: Abnormality of Hemoglobin Molecules in Hereditary Hemolytic Anemias. Harvey Lect. 49, 216 (1953/54).Google Scholar
  103. 98.
    Pauling, L. and C. D. Coryell: The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc. Nat. Acad. Sci. (USA) 22, 210 (1936).CrossRefGoogle Scholar
  104. 99.
    Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle Cell Anemia, a Molecular Disease. Science (Washington) no, 2865 (1949)Google Scholar
  105. 100.
    Perutz, M. F., I. F. Trotter, E. R. Howells and D. W. Green: An X-Ray Study of Reduced Human Hemoglobin. Acta Cristallogr. 8, 241 (1955).CrossRefGoogle Scholar
  106. 101.
    Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobins. Biochemic. J. 42, 287 (1948).Google Scholar
  107. 102.
    Prins, H. K. and T. H. J. Huisman: Chromatographic Behaviour of Haemoglobin E. Nature (London) 177, 840 (1956).CrossRefGoogle Scholar
  108. 103.
    Rhinesmith, H. S., W. A. Schroeder and N. Martin: The N-Terminal Sequence of the Chains of Normal Adult Human Hemoglobin. J. Amer. Chem. Soc. 80, 3358 (1958).CrossRefGoogle Scholar
  109. 104.
    Rhinesmith, H. S., W. A. Schroeder and L. Pauling: The N-Terminal Amino Acid Residues of Normal Adult Human Hemoglobin: A Quantitative Study of Certain Aspects of Sanger’s DNP-Method. J. Amer. Chem. Soc. 79, 609 (1957)CrossRefGoogle Scholar
  110. 105.
    Rhinesmith, H. S., W. A. Schroeder and L. Pauling: A Quantitative Study of the Hydrolysis of Human Dinitrophenyl-(DNP)globin: The Number and Kind of Polypeptide Chains in Normal Adult Human Hemoglobin. J. Amer. Chem. Soc. 79, 4682 (1957).CrossRefGoogle Scholar
  111. 106.
    Riggs, A. F.: Sulfhydryl Groups and the Interaction between the Hemes in Hemoglobin. J. Gen. Physiol. 36, 1 (1952).CrossRefGoogle Scholar
  112. 107.
    Rossi-Fanelli, A., E. Antonini and A. Caputo: Pure Native Globin from Human Haemoglobin: Preparation and Some Physico-chemical Properties. Biochim. Biophys. Acta 28, 221 (1958).CrossRefGoogle Scholar
  113. 108.
    Rossi-Fanelli, A., D. Cavallini and C. De Marco: Amino Acid Composition of Human Crystallized Myoglobin and Haemoglobin. Biochim. Biophys. Acta 17, 377 (1955).CrossRefGoogle Scholar
  114. 109.
    Rossi-Fanelli, A., D. Cavallini, C. De Marco and F. Trasatti: Fetal Hb. I. Quantitative Analysis of the Amino Acids of Crystalline Human Fetal Hb and Some Technical Precautions. Boll. Soc. ital. Biol. sper. 31, 328 (1955) [Chem. Abstr. 49, 14982 (1955)].Google Scholar
  115. 110.
    Roughton, F. J. W. and J. C. Kendrew (Editors): Haemoglobin. London: Butterworths, and New York: Interscience Publ. 1949Google Scholar
  116. 111.
    Sanger, F.: The Arrangement of Amino Acids in Proteins. Adv. Protein Chem. 7, 1 (1952).CrossRefGoogle Scholar
  117. 112.
    Schapira, G. et J.-C. Dreyfus: Groupes N-terminaux de l’hémoglobine de la maladie de Cooley. C. R. Séances Soc. Biol. 148, 895 (1954)Google Scholar
  118. 113.
    Schräm, E., S. Moore and E. J. Bigwood: Chromatographie Determination of Cystine as Cysteic Acid. Biochemic. J. 57, 33 (1954)Google Scholar
  119. 114.
    Schramm, G., J. W. Schneider und A. Anderer: Zur Bestimmung der Amino-Endgruppen verschiedener Hämoglobine und des Tabakmosaikvirus mit Phenylisothiocyanat. Z. Naturforsch, iib, 12 (1956) [Chem. Abstr. 50, 8789 (1956)].Google Scholar
  120. 115.
    Schroeder, W. A. and J. Balog: unpublished.Google Scholar
  121. 116.
    Schroeder, W. A. and L. M. Kay: unpublished.Google Scholar
  122. 117.
    Schroeder, W. A., L. M. Kay and I. C. Wells: Amino Acid Composition of Hemoglobins of Normal Negores and Sickle-cell Anemics. J. Biol. Chem. 187, 221 (1950)Google Scholar
  123. 118.
    Schroeder, W. A. and G. Matsuda: N-Terminal Residues of Human Fetal Hemoglobin. J. Amer. Chem. Soc. 80, 1521 (1958).CrossRefGoogle Scholar
  124. 119.
    Schroeder, W. A., G. Matsuda and R. T. Jones: unpublished.Google Scholar
  125. 120.
    Schroeder, W. A., G. Matsuda, N. Martin, L. M. Kay and M. Clegg: unpublished.Google Scholar
  126. 121.
    Stein, W. H., H. G. Kunkel, R. D. Cole, D. H. Spackman and S. Moore: Observations on the Amino Acid Composition of Human Hemoglobins. Biochim. Biophys. Acta 24, 640 (1957)CrossRefGoogle Scholar
  127. 122.
    Svedberg, T. and K. O. Pedersen: The Ultracentrifuge. Oxford: Clarendon Press. 1940.Google Scholar
  128. 123.
    Taylor, J. F. and R. L. Swarm: Molecular Weight of Human Fetal Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 259 (1949)Google Scholar
  129. 124.
    Theorell, H.: Über die chemische Konstitution des Cytochroms c. Biochem. Z. 298, 242 (1938).Google Scholar
  130. 125.
    Theorell, H.: Cystin aus Porphyrin C. Enzymologia 6, 88 (1939).Google Scholar
  131. 126.
    Relations between Prosthetic Groups, Coenzymes and Enzymes. In: D. E. Green, Currents in Biochemical Research, p. 275. New York: Interscience Publ. 1956.Google Scholar
  132. 127.
    Tuppy, H. and S. Paleus: Study of a Peptic Degradation Product of Cytochrome c. I. Purification and Chemical Composition. Acta Chem. Scand. 9, 353 (1955).CrossRefGoogle Scholar
  133. 128.
    Tuttle, A. H.: Human Hemoglobins. J. Chronic Diseases 6, 528 (1957) [Chem. Abstr. 52, 2226 (1958)].Google Scholar
  134. 129.
    Van Der Schaaf, P. C. and T. H. J. Huisman: The Amino Acid Composition of Human Adult and Foetal Carbonmonoxyhaemoglobin Estimated by Ion Exchange Chromatography. Biochim. Biophys. Acta 17, 81 (1955).Google Scholar
  135. 130.
    Vinograd, J. and U. Hasserodt: unpublished.Google Scholar
  136. 131.
    Vinograd, J. and W. D. Hutchinson: C-Hybrids of Human Hemoglobins. I. Dissociation of Human Haemoglobin and the Isolation of C-Labelled Haemoglobin Hybrids. Nature (London) (submitted).Google Scholar
  137. 132.
    Vinograd, J. R., W. D. Hutchinson and W. A. Schroeder: C-Hybrids of Human Hemoglobins. II. The Identification of the Aberrant Chain in Human Hemoglobin S. J. Amer. Chem. Soc. (in press).Google Scholar
  138. 133.
    Walker, J. and E. P. N. Turnbull: Hemoglobin and Red Cells in the Human Fetus, in. Fetal and Adult Hemoglobin. Arch. Disease Childhood 30, III (1955) [Chem. Abstr. 49, 11125 (1955)]Google Scholar
  139. 133a.
    Wilson, S. and D. B. Smith: Separation of the Valyl-leucyl- and Valyl-glutamyl-polypeptide Components of Horse Globin by Column Chromatography and Fractional Precipitation. Can. J. Biochem. Physiol. 37, 405 (1959).CrossRefGoogle Scholar
  140. 134.
    Wyman, J., Jr.: Heme Proteins. Adv. Protein Chem. 4, 407 (1948).CrossRefGoogle Scholar
  141. 135.
    Zinsser, H. H. and Y.-C. Tang: X-Ray Observations on Single Crystals of Carbonmonoxyhemoglobin from Human Fetal Blood. Arch. Biochem. Biophys. 34, 81 (1951)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1959

Authors and Affiliations

  • W. A. Schroeder
    • 1
  1. 1.PasadenaUSA

Personalised recommendations