Advertisement

Abstract

Indole compounds and their biochemistry have been attracting increasing attention in recent years. Application of new techniques has not only detected many more indoles in nature, but more importantly, the hormonal nature of some of these compounds has been widely established in both plants and animals. On these grounds alone, it is timely to consider the present status of higher plant indoles and their biochemistry.

Keywords

Indoleacetic Acid Indole Alkaloid Indole Derivative Plant Growth Substance Indole Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J. A., M. R. Ziegler and D. Doeden: Banana Feeding and Urinary Excretion of 5-Hydroxyindoleacetic Acid. Science (Washington) 127, 236 (1958).Google Scholar
  2. 2.
    Andreae, W. A. and N. E. Good: The Formation of Indoleacetylaspartic Acid in Pea Seedlings. Plant Physiol. 30, 380 (1955).Google Scholar
  3. 3.
    Studies on 3-Indoleacetic Acid Metabolism. IV. Conjugation with Aspartic Acid and Ammonia as Processes in the Metabolism of Carboxylic Acids. Plant Physiol. 32, 566 (1957).Google Scholar
  4. 4.
    Andreae, W. A. and M. W. H. Van Ysselstein: Studies on 3-Indoleacetic Acid Metabolism. III. The Uptake of 3-Indoleacetic Acid by Pea Epicotyls and its Conversion to 3-Indoleacetylaspartic Acid. Plant Physiol. 31, 235 (1956).Google Scholar
  5. 5.
    Arai, I.: Growth Factor for Salmonella typhosa. V. Mechanism of Growth Promoting Action of Tryptophan. (2). Additional Observations on the Inhibition of Growth of Salmonella typhosa by Several Indole Derivatives. J. pharmac. Soc. Japan 71, 673 (1951) [Chem. Abstr. 45, 10301 (1951)].Google Scholar
  6. 6.
    Armstrong, M. D., K. N. F. Shaw, M. J. Gortakowski and H. Singer: The Indole Acids of Human Urine. Paper Chromatography of Indole Acids. J. Biol. Chem. 232, 17 (1958).Google Scholar
  7. 7.
    Aronoff, S.: Experiments on the Biogenesis of the Pyridine Ring in Higher Plants. Plant Physiol. 31, 355 (1956).Google Scholar
  8. 8.
    Ashby, W. C.: Effects of Certain Acid Growth-regulating Substances and Their Corresponding Aldehydes on the Growth of Roots. Bot. Gaz. 112, 237 (1951)Google Scholar
  9. 9.
    Avery, G. S., Jr. and J. Berger: Tryptophan and Phytohormone Precursors. Science (Washington) 98, 513 (1943).Google Scholar
  10. 10.
    Avery G. S., Jr., J. Berger and B. Shalucha: Auxin Storage as Related to Endosperm Type in Maize. Bot, Gaz. 103, 806 (1942).Google Scholar
  11. 11.
    Baccarini, P.: Sopra la presenza di indolo nei fiori di alcune piante. Bull, soc. botan. Ital. 1910, 96.Google Scholar
  12. 12.
    Sulla presenza di indolo negli organi vegetativi di alcune piante. Bull, soc. botan. Ital. 1911, 105.Google Scholar
  13. 13.
    Baker, J. W.: Syntheses in the Indole Series. Part I. Synthesis of Indolyl-3-glyoxylic Acid and of r-3-Indolylglycine. J. Chem. Soc. ( London ) 1940, 458.Google Scholar
  14. 14.
    Ballantine, J. A., C. B. Barrett, R. J. S. Beer, S. Eardley, A. Robertson, B. L. Shaw and T. H. Simpson: The Chemistry of Bacteria. Part VII. The Structure of Violacein. J. Chem. Soc. ( London ) 1958, 755.Google Scholar
  15. 15.
    Barratt, R. W. and W. Ogata: A Strain of Neurospora with an Alternative Requirement for Leucine or Aromatic Amino Acids. Amer. J. Bot. 41, 763 (1954).Google Scholar
  16. 16.
    Beijerinck, M. W.: On the Formation of Indigo from the Woad (Isatistinctofia). Kon. Ned. Akad. Wetensch. Proc. 2, 120 (1900).Google Scholar
  17. 17.
    Beijerinck, M. W.: On Indigo-fermentation. Kon. Ned. Akad. Wetensch. Proc. 2, 495 (1900).Google Scholar
  18. 18.
    Beijerinck, M. W.: Further Researches on the Formation of Indigo from the Woad (Isatistinctofia). Kon. Ned. Akad. Wetensch. Proc. 3, 101 (1901).Google Scholar
  19. 19.
    Bentley, J. A.: The Naturally-occurring Auxins and Inhibitors. Annu. Rev. Plant Physiol. 9, 47 (1958).Google Scholar
  20. 20.
    Role of Plant Hormones in Algal MetaboUsm and Ecology. Nature (London) 181, 1499 (1958).Google Scholar
  21. 21.
    Bentley, J. A. and A. S. Bickle: Studies on Plant Growth Hormones. II. Further Biological Properties of 3-Indolylacetonitrile. J. exp. Bot. 3, 406 (1952).Google Scholar
  22. 22.
    Bentley, J. A., K. R. Farrar, S. Housley, G. F. Smith and W. C. Taylor: Some Chemical and Physiological Properties of 3-Indolylpyruvic Acid. Biochemic. J. 64, 44 (1956).Google Scholar
  23. 23.
    Bentley, J. A. and S. Housley: Studies on Plant Growth Hormones. I. Biological Activities of 3-Indolylacetaldehyde and 3-Indolylacetonitrile. J. exp. Bot. 3, 393 (1952).Google Scholar
  24. 24.
    Bentley, K. W.: Alkaloids of the Indole Group I and II. In: The Chemistry of Natural Products. The Alkaloids. Vol. I, p. 146. New York: Interscience Pubi. 1957.Google Scholar
  25. 25.
    Berg, C. P., W. C. Rose and C. S. Marvel: Tryptophane and Growth. III. 3-Indolepropionic Acid and 3-Indolepyruvic Acid as Supplementing Agents in Diets Deficient in Tryptophan. J. Biol. Chem. 85, 219 (1929/30).Google Scholar
  26. 26.
    Berger, J. and G. S. Avery, Jr.: Isolation of an Auxin Precursor and an Auxin from Maize. Amer. J. Bot. 31, 199 (1944).Google Scholar
  27. 27.
    Berger, J. and G. S. Avery, Jr.: Chemical and Physiological Properties of Maize Auxin Precursor. Amer. J. Bot. 31, 203 (1944).Google Scholar
  28. 28.
    Bergtheil, C.: The Fermentation of the Indigo-plant. Chem. Soc. (London) 85, 870 (1904).Google Scholar
  29. 29.
    Berthelot, a.: Recherches sur le Proteus vulgaris. Ill B. Étude de la fonction indologène. Ann. Inst. Pasteur 28, 849 (1914).Google Scholar
  30. 30.
    Bitancourt, a. a.: Recherches physiologiques sur les auxines. Rev. gén. bot. 62, 498 (1955).Google Scholar
  31. 31.
    Bitancourt, A. A., K. Schwarz e A. P. Noguera: A DecomposÍ9ao Espontánea de Alguns Derivados Indólicos. I. Métodos Experimentáis. Arqu. Inst. Biol. (Sao Paulo) 24 (13), 169 (1957).Google Scholar
  32. 32.
    Block, R. J. and K. W. Weiss: Amino Acid Handbook, Part II, p. 296. Springfield, Illinois: Thomas Pubi. 1956.Google Scholar
  33. 33.
    Blommaert, K. L. J.: Growth- and Inhibiting-substances in Relation to the Rest Period of the Potato Tuber. Nature (London) 174, 970 (1954).Google Scholar
  34. 34.
    Bonde, E. K.: Auxins and Auxin Precursors in Acid and Nonacidic Fractions of Plant Extracts. Bot. Gaz. 115, i (1953).Google Scholar
  35. 35.
    Boorsma, W. G.: Über Aloeholz und andere Riechhölzer. Bull. Dépt. Agrie. Indes Néerlandaises (Buitenzorg) 7 (Pharmacologic 3), 1 (1907)Google Scholar
  36. 36.
    Booth, A.: Non Hormonal Growth Promotion Shown by Aqueous Extracts. J. exp. Bot. 9, 306 (1958).Google Scholar
  37. 37.
    Borzi, A.: Produzione d’indolo e impollinazione della Visnea Macanera L. Atti Reale Accad. Naz. Lincei (Roma) [5] 13, 372 (1904).Google Scholar
  38. 38.
    Bouveault, L. et R. Locquin: Préparation des éthers et des acides a-cétoniques à l’aide des éthers ocoximidés (V). Bull. soc. chim. France [3] 31, 1142 (1904).Google Scholar
  39. 39.
    Bowden, K., B. G. Brown and J. E. Batty: 5-Hydroxytryptamine: its Occurrence in Cowhage. Nature (London) 174, 925 (1954).Google Scholar
  40. 40.
    Bowden, K. and L. Marion: The Biogenesis of Alkaloids. IV. The Formation of Gramine from Tryptophan in Barley. Canad. J. Chem. 29, 1037 (1951).Google Scholar
  41. 41.
    The Biogenesis of Alkaloids. V. Radioauto graphs of Barley Leaves fed with Tryptophan-JS-C. Canad. J. Chem. 29, 1043 (1951)Google Scholar
  42. 42.
    Brandt, K., H. V. Euler, H. Hellström und N. Löfgren: Gramin und zwei Begleiter desselben in Laubblättern von Gerstensorten. Z. physiol. Chem. (Hoppe-Seyler) 235, 37 (1935)Google Scholar
  43. 43.
    Brown, J. B., H. B. Henbest and E. R. H. Jones: 3-indolylacetaldehyde and 3-Indolylacetone. J. Chem. Soc. ( London ) 1952, 3172.Google Scholar
  44. 44.
    Bulard, C. et A. C. Leopold: 5-Hydroxytryptamine chez les végétaux supérieurs. C. R. hebd. Séances Acad. Sci. 247, 1382 (1958).Google Scholar
  45. 45.
    Mise en évidence de l’activité de l’acide 5-hydroxyindolacetique sur l’élongation des cellules végétales. C. R. hebd. Séances Acad. Sci. (sous presse).Google Scholar
  46. 46.
    Cahill, W. M. and R. W. Jackson: The Proof of Synthesis and the Configurational Relationships of Abrine. J. Biol. Chem. 126, 29 (1938).Google Scholar
  47. 47.
    Cerighelli, M. R.: Sur I’indol des fleurs du Jasmin d’Espagne. C. R. hebd. Séances Acad. Sci. 179, 1193 (1924).Google Scholar
  48. 48.
    Christiansen, G. S. and K. V. Thimann: The Metabolism of Stem Tissue During Growth and Its Inhibition. III. Nitrogen Metabolism. Arch. Biochemistry 28, 117 (1950).Google Scholar
  49. 49.
    Clarke, A. J. and P. J. G. Mann: The Oxidation of Tryptamine to 3-Indole- acetaldehyde by Plant Amine Oxidase. Biochemic. J. 65, 763 (1957)Google Scholar
  50. 50.
    Collier, H. O. J.: The Occurrence of 5-Hydroxytryptamine in Nature. In: G. P. Lewis, 5-Hydroxytryptamine, p. 5. London and New York: Pergamon Press. 1958.Google Scholar
  51. 51.
    Collier, H. O. J. and G. B. Chesher: Identification of 5-Hydroxytryptamine in the Sting of the Nettle (Urtica dioica). Brit. J. Pharmacol. 11, 186 (1956).Google Scholar
  52. 52.
    Cramer, F.: Über Einschluß Verbindungen. IV. Die Hemmung der Glykosid- spaltung durch Cyclodextrin. Liebigs Ann. Chem. 579, 17 (1953).Google Scholar
  53. 53.
    Curry, G. M., K. V. Thimann and P. M. Ray: The Base Curvature Response of Avena Seedlings to the Ultraviolet. Physiol. Plantarum 9, 429 (1956).Google Scholar
  54. 54.
    Dakin, H. D.: The Oxidation of Amino Acids to Cyanides. Biochemic. J. 10, 319 (1916).Google Scholar
  55. 55.
    Dalgliesh, C. E.R Metabolism of the Aromatic Amino Acids. Adv. Protein Chem. 10, 31 (1955)Google Scholar
  56. 56.
    Dannenburg, W. N. and J. L. Liverman: Conversion of Tryptophan-2-C to Indoleacetic Acid by Watermelon Tissue Slices. Plant Physiol. 32, 263 (1957)Google Scholar
  57. 57.
    Denffer, D. V., M. Behrens und A. Fischer: Papierchromatographischer und papierelektrophoretischer Nachweis des Indoleacetonitrils und des Indolealdehyds in Extrakten aus Kohlpflanzen. Naturwiss. 39, 550 (1952).Google Scholar
  58. 58.
    Deulofeu, V., E. Hug and P. Mazzocco: Studies on Argentine Plants. Part I. Hypaphorine from Erythrina crystagalli. J. Chem. Soc. (London) 1939, 1841.Google Scholar
  59. 59.
    Dunstan, W. R.: On the Occurrence of Skatole in the Vegetable Kingdom. Proc. Roy. Soc. (London) 46, 211 (1889).Google Scholar
  60. 60.
    Dunstan, W. R. and T. A. Henry: Occurrence of Orthohydroxyacetophenone in the Volatile Oil of Chione glabra. J. Chem. Soc. (London) 75, 66 (1899).Google Scholar
  61. 61.
    Ehrlich, F. und K. A. Jacobsen: Über die Umwandlung von Aminosäuren in Oxysäuren durch Schimmelpilze. Ber. dtsch. chem. Ges. 44, 888 (1911).Google Scholar
  62. 62.
    Elze, F.: Über das Öl von Robinia pseudoacacia. Chem.-Ztg. 34, 814 (1910).Google Scholar
  63. 63.
    Euler, H. V. und H. Erdtman: Über Gramin aus schwedischen Gerstensippen. Liebigs Ann. Chem. 520, 1 (1935).Google Scholar
  64. 64.
    Euler, H. V., H. Erdtman und H. Hellström: Über das Alkaloid Gramin. Ber. dtsch. chem. Ges. 69, 743 (1936).Google Scholar
  65. 65.
    Euler, H. V. und H. Hellström: Spektrometrische Messungen an Alkohol-extrakten der Laubblätter von Chlorophyllmutanten der Gerste. Z. physiol. Chem. (Hoppe-Seyler) 208, 43 (1932).Google Scholar
  66. 66.
    Über ein Indolderivat aus zwei chlorophyllmutierenden Gerstensippen. Z. physiol. Chem. (Hoppe-Seyler) 217, 23 (1933).Google Scholar
  67. 67.
    Euler, H. v., H. Hellström und J. Hagen: Über die aus Gerstenmutanten Albina i und 3 gewonnene Indolbase und ihre Umwandlung. Ark. Kemi, Mineral. Geol. 11 B (36), 1 (1934).Google Scholar
  68. 68.
    Euler, H. v., H. Hellström und N. Löfgren: Zur chemischen Genetik chlorophyllmutierender Gerstensippen. Z. physiol. Chem. (Hoppe-Seyler) 234, 151 (1935)Google Scholar
  69. 69.
    Fawcett, C. H., H. F. Taylor, R. L. Wain and F. Wightman: The Metabolism of Certain Acids, Amides and Nitriles within Plant Tissues. Proc. Roy. Soc. (London) 148 B, 543 (1958).Google Scholar
  70. 70.
    Fawcett, C. H., R. L. Wain and F. Wightman: Beta-Oxidation of Omega- (3-Indolyl)alkanecarboxylic Acids in Plant Tissues. Nature (London) 181, 1387 (1958).Google Scholar
  71. 71.
    Ferri, M. G.: Fluorescence and Photoinactivation of Indoleacetic Acid Arch. Biochem. Biophys. 31, 127 (1951).Google Scholar
  72. 72.
    Fischer, A.: Über die papierchromatographische und papierelektrophoretische Trennung von Indolderivaten. Planta 43, 288 (1954).Google Scholar
  73. 73.
    Fish, M. S.: Personal communication, 1958.Google Scholar
  74. 74.
    Fish, M. S., N. M. Johnson and E. C. Horning: Piptadenia Alkaloids. Indole Bases of P. peregrina (L.) Benth. and Related Species. J. Amer. Chem. Soc. 77, 5892 (1955).Google Scholar
  75. 75.
    Fish, M. S., N. M. Johnson, E. P. Lawrence and E. C. Horning: Oxidative N-Dealkylation. Biochem. Biophys. acta 18, 564 (1955).Google Scholar
  76. 76.
    Fish, M. S., C. C. Sweeley, N. M. Johnson, E. P. Lawrence and E. C. Horning: Chemical and Enzymic Rearrangements of N,N-Dimethyl Amino Acid Oxides. Biochim. Biophys. Acta 21, 196 (1956).Google Scholar
  77. 77.
    Folkers, K. and F. Koniuszy: Erythrina Alkaloids. III. Isolation and Characterization of a New Alkaloid, Erythramine. J. Amer. Chem. Soc. 61, 1232 (1939).Google Scholar
  78. 78.
    Erythrina Alkaloids. VII. Isolation and Characterization of the New Alkaloids, Erythraline and Erythratine. J. Amer. Chem. Soc. 62, 436 (1940).Google Scholar
  79. 79.
    Folkers, K., J. Shavel, Jr. and F. Koniuszy: Erythrina Alkaloids. X. Isolation and Characterization of Erysonine and Other Liberated Alkaloids. J. Amer. Chem. Soc. 63, 1544 (1941)Google Scholar
  80. 80.
    Frieber, W.: Beiträge zur Frage der Indolbildung und der Indolreaktionen sowie zur Kenntnis des Verhaltens indolnegativer Bakterien. Centralbl. Bakter. u. Parasitenk. 87, 254 (1921).Google Scholar
  81. 81.
    Fukui, H. N., J. E. Devries, S. H. Wittwer and H. M. Sell: Ethyl-3-Indoleacetate: an Artefact in Extracts of Immature Corn Kernels. Nature (London) 180, 1205 (1957)Google Scholar
  82. 82.
    Gale, E. F.: The Bacterial Amino Acid Decarboxylases. Adv. Enzymology 6, 1 (1946).Google Scholar
  83. 83.
    Galston, A. W.: Indoleacetic-Nicotinic Acid Interactions in the Etiolated Pea Plant. Plant Physiol. 24, 577 (1949).Google Scholar
  84. 84.
    Riboflavin-sensitized Photooxidation of Indoleacetic Acid and Related Compounds. Proc. Nat. Acad. Sei. (USA) 35, 10 (1949).Google Scholar
  85. 85.
    Some Metabolic Consequences of the Administration of Indoleacetic Acid to Plant Cells. In: R. L. Wain and F. Wightman, The Chemistry and Mode of Action of Plant Growth Substances, p. 219. London: Butterworths. 1956.Google Scholar
  86. 86.
    Galston, A. W. and M. E. Hand: Adenine as a Growth Factor for Etiolated Peas and its Relation to the Thermal Inactivation of Growth. Arch. Biochemistry 22, 434 (1949).Google Scholar
  87. 87.
    Ghatak, N.: Chemical Examination of the Seeds of Abrus precatorius, III. Constitution of Abrine. Bull. Acad. Sei. United Provinces Agra and Oudh, Allahabad 3 (4), 295 (1934).Google Scholar
  88. 88.
    Ghatak, N. and R. Kaul: Chemical Examination of the Seeds of Abrus precatorius Linn. Part I. J. Indian Chem. Soc. 9, 383 (1932).Google Scholar
  89. 89.
    Gibson, F. W. E., C. H. Doy and S. B. Segall: A Possible Intermediate in the Biosynthesis of Tryptophan: i-Deoxy-i-N-o-Carboxyphenyl-Ribulose. Nature (London) 181, 549 (1958).Google Scholar
  90. 90.
    Good, N. E.: The Synthesis of Indole-3-acetyl-D,L-aspartic Acid and Related Compounds. Canad. J. Chem. 34, 1356 (1956).Google Scholar
  91. 91.
    Good, N. E. and W. A. Andreae: Malonyltryptophan in Higher Plants. Plant Physiol. 32, 561 (1957)Google Scholar
  92. 92.
    Good, N. E., W. A. Andreae and M. W. H. Van Ysselstein: Studies on 3-Indoleacetic Acid Metabolism. II. Some Products of the Metabolism of Exogenous Indoleacetic Acid in Plant Tissues. Plant Physiol. 31, 231 (1956).Google Scholar
  93. 93.
    Gordon, S. A.: Occurrence, Formation and Inactivation of Auxins. Annu. Rev. Plant Physiol. 5, 341 (1954).Google Scholar
  94. 94.
    The Biogenesis of Natural Auxins. In: R. L. Wain and F. Wightman, The Chemistry and Mode of Action of Plant Growth Substances, p. 65. London: Butterworths. 1956.Google Scholar
  95. 95.
    The Effects of Ionizing Radiation on Plants: Biochemical and Physiological Aspects. Quart. Rev. Biol. 32, 3 (1957).Google Scholar
  96. 96.
    Intracellular Localization of the Tryptophan-Indoleacetate Enzyme System. Plant Physiol. 33, 23 (1958).Google Scholar
  97. 97.
    Gordon, S. A. and F. S. Nieva: The Biosynthesis of Auxin in the Vegetative Pineapple. I. Nature of the Active Auxin. Arch. Biochemistry 20, 356 (1949).Google Scholar
  98. 98.
    The Biosynthesis of Auxin in the Vegetative Pineapple. II. The Precursors of Indoleacetic Acid. Arch. Biochemistry 20, 367 (1949).Google Scholar
  99. 99.
    Gordon, S. A. and R. P. Weber: Studies on the Mechanism of Phytohormone Damage by Ionizing Radiation. I. The Radiosensitivity of Indoleacetic Acid. Plant Physiol. 30, 200 (1955).Google Scholar
  100. 100.
    Gordon, S. A. and S. G. Wildman: The Conversion of Tryptophane to a Plant Growth Substance by Conditions of Mild Alkalinity. J. Biol. Chem. 147, 389 (1943)Google Scholar
  101. 101.
    Gordon, W. G.: The Metabohsm of N-Methylated Amino Acids. II. The Comparative Availability of l(—)-Tryptophane, l(+)- and dl-Amino-N- monomethyltryptophane for Growth. J. Biol. Chem. 129, 309 (1939)Google Scholar
  102. 102.
    Gordon, W. G. and R. W. Jackson: The Metabolism of Certain Monomethyl Tryptophanes. J. Biol. Chem. no, 151 (1935).Google Scholar
  103. 103.
    Gots, J. S. and S. H. Ross: The Accumulation of Indole-3-glycerol by Tryptophan Auxotrophs of Escherichia coli. Biochim. Biophys. Acta 24, 429 (1957)Google Scholar
  104. 104.
    Gray, P. H. H.: The Formation of Indigotin from Indol by Soil Bacteria. Proc. Roy. Soc. (London) 102 B, 263 (1927).Google Scholar
  105. 105.
    Gray, R. A.: Preparation and Properties of 3-Indoleacetaldehyde. Arch. Biochem. Biophys. (in press).Google Scholar
  106. 106.
    Greenberg, D. M.: Carbon Catabolism of Amino Acids. In: Chemical Pathways of Metabolism, Vol. II, p. 47. New York: Academic Press. 1954.Google Scholar
  107. 107.
    Synthetic Processes Involving Amino Acids. In: Chemical Pathways of Metabolism, Vol. II, p. 113. New York: Academic Press. 1954.Google Scholar
  108. 108.
    Greenberg, J. B.: Reactions of Possible Significance in the Synthesis of Indolic Auxins in Higher Plants. Thesis, Yale University, 1958.Google Scholar
  109. 109.
    Greenberg, J. B., A. W. Galston, K. N. F. Shaw and M. D. Armstrong: Formation and Auxin Activity of Indole-3-Glycolic Acid. Science (Washington) 125, 992 (1957)Google Scholar
  110. 110.
    Greshoff, M.: Hoofdstuk. II. Eerste Bijdrage tot de Chemisch-Pharmacologische Kennis van Nederlandsch-Indische Leguminosen. 4. Erythrina (Hypaphorus) suhumbrans HASSK. Mededeel. Lands Plantentuin, Buitenzorg 7, 29 (1890).Google Scholar
  111. 111.
    Onderzoek naar de Plantenstoffen: Sterculiaceae. Mededeel. Lands Plantentuin, Buitenzorg 25, 36 (189S).Google Scholar
  112. 112.
    Onderzoek naar de Plantenstoffen: Leguminosae, Erythrynia L. Mededeel. Lands Plantentuin, Buitenzorg 25, 54 (1898).Google Scholar
  113. 113.
    Onderzoek naar de Plantenstoffen. Urticaceae. Mededeel. Lands Plantentuin, Buitenzorg 25, 175 (1898).Google Scholar
  114. 114.
    Gruen, H. E.: Auxins and Fungi. Annu. Rev. Plant Physiol. 10 (1959), in press.Google Scholar
  115. 115.
    Gustafson, F. G.: Tryptophane as ans Intermediate in the Synthesis of Nicotinic Acid by Green Plants. Science (Washington) no, 279 (1949).Google Scholar
  116. 116.
    Haagen-Smit, A. J., W. B. Dandliker, S. H. Wittwer and A. E. Murneek: Isolation of 3-Indoleacetic Acid from Immature Corn Kernels. Amer. J. Bot. 33, 118 (1946).Google Scholar
  117. 117.
    Haagen-Smit, A. J., W. D. Leech and W. R. Bergren: The Estimation, Isolation and Identification of Auxins in Plant Materials. Amer. J. Bot. 29, 500 (1942).Google Scholar
  118. 118.
    Hadders, M.: Systematische Verbreitung und Vorkommen der Indoxyl- glucoside. In: G. Klein, Handbuch der Pflanzenanalyse, Bd. III (2), S. 1062. Wien: Springer-Verlag. 1932.Google Scholar
  119. 119.
    Happold, F. C.: Tryptophanase-Tryptophan Reaction. Adv. Enzymology 10, 51 (1950).Google Scholar
  120. 120.
    Harada, T.: A New Bacterium in Urine which makes Lignin Red. V. The Relation between the Lignin Red Bacterium and A. I. Bacterium. J. Agrie. Chem. Soc. Japan 23, 96 (1949) [Chem. Abstr. 44, 8419 (1950)].Google Scholar
  121. 121.
    Harding, F.: Études sur le tryptophane, i. Variation au cours de la germination. Arch. sei. physiol. 1, 193 (1947).Google Scholar
  122. 122.
    Hazewinkel, J. J.: Indican. Its Hydrolysis and the Enzyme Causing the Same. Kon. Ned. Akad. Wetensch. Proc. 2, 512 (1900).Google Scholar
  123. 123.
    Hemberg, T.: Studies of Auxins and Growth-inhibiting Substances in the Potato Tuber and Their Significance with Regard to its Rest Period. Acta Horti Bergiani 14, 133 (1948).Google Scholar
  124. 124.
    Henbest, H. B., E. R. H. Jones and G. F. Smith: Isolation of a New Plant Growth Hormone, 3-Indolylacetonitrile. J. Chem. Soc. ( London ) 1953, 3796.Google Scholar
  125. 125.
    Henderson, J. H. M. and J. Bonner: Auxin Metabolism in Normal and Crown Gall Tissue of Sunflower. Amer. J. Bot. 39, 444 (1952).Google Scholar
  126. 126.
    Hendrickson, J. B.: Chemistry of Strychnine. In: R. H. F. Manske, The Alkaloids, Vol. VI. New York: Academic Press. 1959.Google Scholar
  127. 127.
    Herter, C. A.: Note on the Occurrence of Skatol and Indol in the Wood of Celtis reticulosa (Miquel). J. Biol. Chem. 5, 489 (1909).Google Scholar
  128. 128.
    Hesse, A.: Über ätherisches Jasminblüthenöl. III. Ber. dtsch. chem. Ges. 32, 2611 (1899).Google Scholar
  129. 129.
    Hesse, A.: Über ätherisches Jasminblüthenöl. IV. Ber. dtsch. chem. Ges. 33, 1585 (1900).Google Scholar
  130. 130.
    Hesse, A.: Über ätherisches Jasminblüthenöl. VI. Ber. dtsch. chem. Ges. 34, 2916 (1901).Google Scholar
  131. 131.
    Hesse, A. und O. Zeitschel: Über Orangenblüthenöl. II. J. prakt. Chem. 66, 481 (1902).Google Scholar
  132. 132.
    Hochstein, F. A. and A. M. Paradies: Alkaloids of Banisteria caapi and Prestonia amazonicum. J. Amer. Chem. Soc. 79, 5735 (1957)Google Scholar
  133. 133.
    Holley, R. W., F. P. Boyle, H. K. Durfee and A. D. Holley: A Study of the Auxins in Cabbage Using Counter-Current Distribution. Arch. Biochemistry 32, 192 (1951)Google Scholar
  134. 134.
    Hoogewerf, S. and H. Termeulen: Contribution to the Knowledge of Indican. Kon. Ned. Akad. Wetensch. Proc. 2, 520 (1900).Google Scholar
  135. 135.
    Hopkins, F. G. and S. W. Cole: A Contribution to the Chemistry of Proteids. II. The Constitution of Tryptophan, and the Action of Bacteria upon it. J. Physiol. 29, 451 (1903).Google Scholar
  136. 136.
    Hoshino, T.: Die Konstitution des Abrins. Liebigs Ann. Chem. 520, 31 (1935)Google Scholar
  137. 137.
    Hoshino, T. und T. Kobayashi: Synthese des d,l-Eseräthols. Synthetische Versuche über Eserin. IV. Synthesen in der Indol-Gruppe. XIII. Liebigs Ann. Chem. 520, 11 (1935).Google Scholar
  138. 138.
    Housley, S. and J. A. Bentley: Studies in Plant Growth Hormones. IV. Chromatography of Hormones and Hormone Precursors in Cabbage. J. exp. Bot. 7, 219 (1956).Google Scholar
  139. 139.
    Hurry, J. B.: The Woad Plant and its Dye. London: Oxford Univ. Press. 1930.Google Scholar
  140. 140.
    Hussong, R. V. and S. Quam: Relationship of the Consumption of Peppergrass by Cows to the Flavor and Indol Content of Butter. J. Dairy Sei. 26, 505 (1943)Google Scholar
  141. 141.
    Ingle, J. D.: Report of 31st Annual Meeting American Butter Institute, 1939. Dairy Sei. Abstracts 2, 256 (1940).Google Scholar
  142. 142.
    Jackson, R. W.: Indole Derivatives in Connection with a Diet Deficient in Tryptophane. II. J. Biol. Chem. 84, 1 (1929).Google Scholar
  143. 143.
    Jacquot, R. et F. Harding: Les variations du tryptophane au cours de la germination de Phaseolus muliiflorus, C. R. hebd. Séances Acad. Sei. 224, 1576 (1947)Google Scholar
  144. 144.
    Jones, E. R. H., H. B. Henbest, G. F. Smith and J. A. Bentley: 3-Indolylacetonitrile, a Naturally Occurring Plant Growth Hormone. Nature (London) 169, 485 (1952).Google Scholar
  145. 145.
    Jones, E. R. H. and W. C. Taylor: Some Indole Constituents of Cabbage. Nature (London) 179, 1138 (1957).Google Scholar
  146. 146.
    Julian, P. L., E. W. Meyer and H. C. Printy: The Chemistry of Indoles. In: R. C. Elderfield, Heterocyclic Compounds, Vol. III, p. i. New York: Wiley and Sons. 1952.Google Scholar
  147. 147.
    Kamienski, E. S. V.: Untersuchungen über die flüchtigen Amine der Pflanzen. I. Methodik der Trennung und des Nachweises flüchtiger Amine. Planta 50, 291 (1957/58).Google Scholar
  148. 148.
    Kamienski, E. S. V.: Untersuchungen über die flüchtigen Amine der Pflanzen. II. Die Amine von Blütenpflanzen und Moosen. Planta 50, 315 (1957/58).Google Scholar
  149. 149.
    Kamienski, E. S. V.: Untersuchungen über die flüchtigen Amine der Pflanzen. III. Die Amine von Pilzen. Über den Weg der Aminbildung in Pflanzen. Planta 50, 331 (1957/58).Google Scholar
  150. 150.
    Kaper, J. M.: Over de Omzetting van Tryptophaan door Agrohacterium tumefaciens, Proefschrift, Univ. Leiden, 1957.Google Scholar
  151. 151.
    Kaper, J. M. and H. Veldstra: On the Metabolism of Tryptophan by Agrobacterium tumefaciens. Biochim. Biophys. Acta 30, 401 (1958).Google Scholar
  152. 152.
    Kefford, N. P.: The Growth Substances Separated from Plant Extracts by Chromatography. J. exp. Bot. 6, 129 (1955).Google Scholar
  153. 153.
    The Growth Substances Separated from Plant Extracts by Chromatography. II. The Coleoptile and Root Elongation Properties of the Growth Substances in Plant Extracts. J. exp. Bot. 6, 245 (1955).Google Scholar
  154. 154.
    Kenten, R. H.: The Oxidation of Phenylacetaldehyde by Plant Saps. Biochemic. J. 55, 350 (1953)Google Scholar
  155. 155.
    Kenten, R. H. and P. J. G. Mann: The Oxidation of Amines by Pea Seedlings. Biochemic. J. 50, 360 (1952).Google Scholar
  156. 156.
    Kögl, F., A. J. Haagen-Smit und H. Erxleben: Über ein neues Auxin (Hetero-auxin) aus Harn. Z. physiol. Chem. (Hoppe-Seyler) 228, 90 (1934)Google Scholar
  157. 157.
    Kögl, F. und D. G. F. R. Kostermans: Hetero-auxin als Stoffwechselprodukt niederer pflanzlicher Organismen. Isolierung aus Hefe. Z. physiol. Chem. (Hoppe-Seyler) 228, 113 (1934)Google Scholar
  158. 158.
    Über die Konstitutions-Spezifität des Hetero-auxins. Z. physiol. Chem. (Hoppe-Seyler) 235, 201 (1935).Google Scholar
  159. 159.
    Kretz, F.: Über den mikrochemischen Nachweis von Tryptophan in der Pflanze. Biochem. Z. 130, 86 (1922).Google Scholar
  160. 160.
    Kühn, H. und O. Stein: Über Kondensationen von Indolen mit Aldehyden und sekundären Aminen, I. Mitt.: Eine neue Gramin-Synthese. Ber. dtsch. chem. Ges. 70, 567 (1937).Google Scholar
  161. 161.
    Kulescha, Z.: Recherches sur la transformation du tryptophane sous l’action des tissus de Topinambour. C. R. hebd. Séances Acad. Sei. 228, 1304 (1949).Google Scholar
  162. 162.
    Recherches sur l’élaboration de substances de croissance par les tissus végétaux. Thèse, Sorbonne, 1951Google Scholar
  163. 163.
    Kulescha Z. et R. J. Gautheret: Recherches sur l’action du tryptophane sur la prolifération des cultures de tissus de quelques végétaux. C. R. Séances Soc. Biol. 143, 460 (1949)Google Scholar
  164. 164.
    Recherches sur l’action de la cynurénine sur les tissus de topinambour cultivés in vitro. C. R. Séances Soc. Biol. 145, 245 (1951)Google Scholar
  165. 165.
    Kümmert, E.: Über ätherisches Goldlackblütenöl. Chem.-Ztg. 35, 667 (1911).Google Scholar
  166. 165a.
    Kutâcek, M., M. Valenta und F. Icha: Untersuchungen über den Ascorbigengehalt von Kohlrabi während der Vegetation und den Zusammenhang zwischen Ascorbigen und Wachstum bei den Pflanzen der Familie Brassicaceae. Experientia 13, 289 (1957)Google Scholar
  167. 166.
    Kyusui, C.: Über die im Tierkörper stattfindenden Veränderungen der an N substituierten Aminosäuren. I. Über die Entstehung von Kynurenin und Kynurensäure aus dem N-Methyltryptophan (Abrine) im Kaninchenorganismus. Z. physiol. Chem. (Hoppe-Seyler) 257, 12 (1938/1939)Google Scholar
  168. 167.
    Lapiere, C.: Les Alcaloïdes de UErythrina tholloniana. Bull. soc. chim. biol. (Paris) 31, 862 (1949).Google Scholar
  169. 168.
    Lapiere, C.: Les Alcaloïdes de Uevythrina ahyssinica. J. Pharm. Belg. 6, 71 (1951)Google Scholar
  170. 169.
    Larsen, P.: 3-Indole Acetaldehyde as a Growth Hormone in Higher Plants. Dansk. Bot. Ark. 11 (9), 1 (1944)Google Scholar
  171. 170.
    Larsen, P.: Conversion of Indoleacetaldehyde to Indoleacetic Acid in Excised Coleoptiles and in Coleoptile Juice. Amer. J. Bot. 36, 32 (1949)Google Scholar
  172. 171.
    Larsen, P.: Enzymatic Conversion of Indoleacetaldehyde and Naphthaleneacetaldehyde to Auxins. Plant Physiol. 26, 697 (1951)Google Scholar
  173. 172.
    Larsen, P.: Growth Substances in Higher Plants. In: K. Paech and M. V. Tracey, Modern Methods of Plant Analysis, Vol. III, p. 565. Berlin: Springer-Verlag. 1955Google Scholar
  174. 173.
    Leete, E. and L. Marion: The Biogenesis of Alkaloids. IX. Further Investigations on the Formation of Gramine from Tryptophan. Canad. J. Chem. 31, 1195 (1953)Google Scholar
  175. 174.
    The Biogenesis of Alkaloids. X. Origin of the N-Methyl Groups of the Alkaloids of Barley. Canad. J. Chem. 32, 646 (1954).Google Scholar
  176. 175.
    Lewis, G. P.: 5-Hydroxytryptamine. London and New York: Pergamon Press. 1958Google Scholar
  177. 176.
    Linser, H., H. Mayr und F. Maschek: Papierchromatographie von zellstreckend wirksamen Indolkörpern aus Brassica-Kxten. Planta 44, 103 (1954)Google Scholar
  178. 177.
    Lippmann, E. O. V.: Ein Vorkommen von Indol und Skatol. Ber. dtsch. chem. Ges. 49, 106 (1916).Google Scholar
  179. 178.
    Stickstoff-haltige Bestandteile von Rüben und Rübenprodukten. Ber. dtsch. chem. Ges. 57, 256 (1924).Google Scholar
  180. 179.
    Louveau, C.: Produits de la fleur de Jasmin. Rev. marques parfum, et savon. 9, 482 (1931).Google Scholar
  181. 180.
    Cheimonanthus fragrans. Rev. marques parfum, et savon. 9, 622 (1931).Google Scholar
  182. 181.
    Löwy, M.: Eine Reaktion auf Champignons. Chem.-Ztg. 33, 1251 (1909) [Chem. Abstr. 4, 622 (1910)].Google Scholar
  183. 182.
    Der Champignon, eine indolbildende Pflanze. Chem.-Ztg. 34, 340 (1910) [Chem. Abstr. 4, 1755 (1910)].Google Scholar
  184. 183.
    Luckwill, L. C. and L. E. Powell, Jr.: Absence of Indoleacetic Acid in the Apple. Science (Washington) 123, 225 (1956).Google Scholar
  185. 184.
    Lund, H. A.: The Biosynthesis of Indoleacetic Acid in the Styles and Ovaries of Tobacco Prehminary to the Setting of Fruit. Plant Physiol. 31, 334 (1956).Google Scholar
  186. 185.
    Madinaveitia, J.: The Alkaloids of Arundo donax L. J. Chem. Soc. ( London ) 1937. 1927Google Scholar
  187. 186.
    Magaki, I.: Abrine Demethylase of Escherichia coli. Osaka Daigaku Igaku Zassi7, 359 (1955) [Chem. Abstr. 50, 12147 (1956)].Google Scholar
  188. 187.
    Abrine Demethylase of Rabbit Kidney. Osaka Daigaku Igaku Zassi 7, 369 (1955) [Chem. Abstr. 50, 12147 (1956)].Google Scholar
  189. 188.
    Major, R. J. and K. Folkers: Erythrina Alkaloid. U. S. Patent 2407713 Sept. 1946 [Chem. Abstr. 41, 781 (1947)].Google Scholar
  190. 189.
    Mann, P. J. G.: Purification and Properties of the Amine Oxidase of Pea Seedlings. Biochemic. J. 59, 609 (1955).Google Scholar
  191. 190.
    Mann, P. J. G. and W. R. Smithies: Plant Enzyme Reactions Leading to the Formation of Heterocyclic Compounds, i. The Formation of Unsaturated Pyrrolidine and Piperidine Compounds. Biochemic. J. 61, 89 (1955)Google Scholar
  192. 191.
    Plant Enzyme Reactions Leading to the Formation of Heterocyclic Compounds. 2. The Formation of Indole. Biochemic. J. 61, 101 (1955).Google Scholar
  193. 192.
    Maranon, J. and J. K. Santos: Morphological and Chemical Studies on the Seeds of Erythrina variegata var. orientalis (L.) Merrill. Philippine J. Sei. 48, 563 (1932).Google Scholar
  194. 193.
    Marion, L.: The Indole Alkaloids. In: R. H. F. Manske and H. L. Holmes, The Alkaloids, Vol. II, p. 371. New York: Academic Press. 1952.Google Scholar
  195. 194.
    Mayr, H. H.: Zur Photolyse von Indol-3-Essigsäure bei papierchromatographischen Arbeiten. Planta 46, 512 (1956).Google Scholar
  196. 195.
    Mccoy, T. A., T. H. Sublett and V. W. Dobbs: The Relation of the Amino Acid Composition to the Development of Oats. Plant Physiol. 28, 77 (1953)Google Scholar
  197. 196.
    Meister, A.: Biochemistry of the Amino Acids. New York: Academic Press. 1957Google Scholar
  198. a. Melchior, G. H.: Über den Abbau von Indolderivaten. I. Photolyse durch ultraviolettes Licht. Planta 50, 262 (1957/58).Google Scholar
  199. b. Über den Abbau von Indolderivaten. II. Abbau durch ein Enzymsystem aus Weißkohl und ein Vergleich der Indolderivate in UV-bestrahlten und unbestrahlten Weißkohlpflanzen. Planta 50, 557 (1957/58).Google Scholar
  200. 197.
    Meyer, J.: Die photolytischen Abbauprodukte der 3-Indolessigsäure und ihre physiologische Wirkung auf das Wachstum der Avena-’Koleotilo. Z. Bot. 46, 125 (1958).Google Scholar
  201. 198.
    Michel, B. E.: Growth Responses of Crucifers to Indoleacetic Acid and Indoleacetonitrile. Plant Physiol. 32, 632 (1957).Google Scholar
  202. 199.
    Miles, P. G., H. Lund and J. R. Raper: The Identification of Indigo as a Pigment Produced by a Mutant Culture of Schizophyllum commune. Arch, Biochem. Biophys. 62, 1 (1956).Google Scholar
  203. 200.
    Miller, E. J. and W. Robson: The Synthesis of r-a-Methylamino-3-indolylpropionic Acid. J. Chem. Soc. ( London ) 1938, 1910.Google Scholar
  204. 201.
    Mitoma, C., H. Weissbach and S. Udenfriend: Formation of 5-Hydroxy- tryptophan from Tryptophan by Chromobacteyium violaceum. Nature (London) 175, 994 (1955)Google Scholar
  205. 202.
    Morton, R. A. and N. I. Fahmy: Indole-3-aldehyde from Tissues. Nature (London) 182, 939 (1958).Google Scholar
  206. 203.
    Mothes, K.: Physiology of Alkaloids. Annu. Rev. Plant Physiol. 6, 393 (1955)Google Scholar
  207. 204.
    Mudd, J. B. and S. Zalik: The Metabolism of Indole by Tomato-plant Tissues and Extracts. Canad. J. Bot. 36, 467 (1958).Google Scholar
  208. 205.
    Murakami, Y. and T. Hayashi: The Conversion of Tryptophan to Indoleacetic Acid by the Sap of Immature Kernels of Rice Plants. J. Agrie. Chem. Soc. Japan 31 (7), 468 (1957)Google Scholar
  209. 206.
    Nason, A.: The Distribution and Biosynthesis of Niacin in Germinating Corn. Amer. J. Bot. 37, 612 (1950).Google Scholar
  210. 207.
    Effect of Zinc Deficiency on the Synthesis of Tryptophan by Neurospora Extracts. Science (Washington) 112, 111 (1950).Google Scholar
  211. 208.
    Neger, F. W.: Neue Methoden und Ergebnisse der Mikrochemie der Pflanzen. I. Eine bequeme Reaktion zum Nachweis von Indigo in Pflanzen. Flora 116, 323 (1923).Google Scholar
  212. 209.
    Nichols, R.: A Possible Source of Error in the Chemical Detection of Indolyl Acetic Acid in Plants. Nature (London) 181, 919 (1958).Google Scholar
  213. 210.
    Nitsch, J. P.: Le micro-dosage du L-tryptophane dans les plantes. C. R. Séances Soc. Biol. 145, 1809 (1951).Google Scholar
  214. 211.
    Nitsch, J. P.: Plant Hormones in the Development of Fruits. Quart. Rev. Biol. 27, 33 (1952).Google Scholar
  215. 212.
    Nitsch, J. P.: Free Auxins and Free Tryptophan in the Strawberry. Plant Physiol. 30, 33 (1955)Google Scholar
  216. 213.
    Nitsch, J. P.: Methods for the Investigation of Natural ivuxins and Growth Inhibitors. In: R. L. Wain and F. Wightman, The Chemistry and Mode of Action of Plant Growth Substances, p. 3. London: Butterworths. 1956.Google Scholar
  217. 214.
    Nitsch, J. P. and C. Nitsch: The Separation of Natural Plant Growth Substances by Paper Chromatography. Beitr. Biol. Pflanzen 31, 387 (1955).Google Scholar
  218. 215.
    Nitsch, J. P. and R. H. Wetmore: The Microdetermination of Free L-Tryptophan in the Seedling of Lupinus albus. Science (Washington) 116, 256 (1952).Google Scholar
  219. 216.
    Okunuki, K.: Über ein neues Enzym Glutaminocarboxylase. Bot. Mag. (Tokyo) 51, 270 (1937)Google Scholar
  220. 217.
    Orechoff, A. P.: Chemistry of Alkaloids. Moscow: Akademia Nauk, S. S. S. R. 1955.Google Scholar
  221. 218.
    Orechoff, A. P. and S. S. Norkina: Alkaloids of Arundo donax L. J. Gen. Chem. (USSR) 7, 673 (1937).Google Scholar
  222. 219.
    Orechoff, A. P., S. S. Norkina und T. Maximowa: Über die Alkaloide von Arundo donax L. Ber. dtsch. chem. Ges. 68, 436 (1935).Google Scholar
  223. 220.
    Page, I. H.: Serotonin (5-Hydroxytryptamine); the Last Four Years. Physiol. Rev. 38, 277 (1958).Google Scholar
  224. 221.
    Painter, H. A. and S. S. Zilva: The Tautomeric Conversion of /?-Hydroxy- phenylpyruvic Acid. Biochemic. J. 41, 520 (1947)Google Scholar
  225. 222.
    Parks, L. W. and H. C. Douglas: N-Fructosyl Anthranilic Acid as a Possible Intermediate in the Synthesis of Indole by Saccharomyces. Biochim. Biophys. Acta 23, 207 (1957)Google Scholar
  226. 223.
    Perkin, A. G. and A. E. Everest: The Natural Organic Colouring Matters. London: Longmans Green and Co. 1918.Google Scholar
  227. 224.
    Platt, R. S., Jr. and K. V. Thimann: Interference in Salkowski Assay of Indoleacetic Acid. Science (Washington) 123, 105 (1956)Google Scholar
  228. 225.
    Plügge, P. C.: Tijdschrift voor inlandsche Geneeskundigen, Batavia 1, 933 (1893) [quoted by M. Greshoff, Mededeel. Lands Plantentuin, Buitenzorg 25, 61 (1898)].Google Scholar
  229. 226.
    Onderzoek naar de Plantenstoffen. [Reported by W. G. Boorsma, Mededeel. Lands Plantentuin, Buitenzorg 31, 5 (1899).]Google Scholar
  230. 227.
    Prochazka, IT., V. Sanda and F. Sorm: On the Structure of Ascorbigen. Collect. Czech. Chem. Communs. 22, 654 (1957).Google Scholar
  231. 228.
    Proctor, M. H.: Bacterial Dissimilation of Indoleacetic Acid: A New Route of Breakdown of the Indole Nucleus. Nature (London) 181, 1345 (1958).Google Scholar
  232. 229.
    Rao, J. v.: Chemical Examination of Erythrina indica (white variety). Current Sei. (India) 14, 198 (1945).Google Scholar
  233. 230.
    Rao, P. S., C. V. Rao and T. R. Seshadri: Chemical Examination of Erythrina indica, Proc. Indian Acad. Sei. 7 A, 179 (1938).Google Scholar
  234. 231.
    Rawson, C.: The Cultivation and Manufacture of Indigo in Bengal. J. Soc. Chem. Ind. 18, 467 (1899).Google Scholar
  235. 232.
    Ray, P. M.: The Destruction of Indoleacetic Acid. II. Spectrophotometric Study of the Enzymatic Reaction. Arch. Biochem. Biophys. 64, 193 (1956).Google Scholar
  236. 233.
    Destruction of Auxins. Annu. Rev. Plant Physiol. 9, 81 (1958).Google Scholar
  237. 234.
    Ray, P. M. and G. M. Curry: Intermediates and Competing Reactions in the Photodestruction of Indoleacetic Acid. Nature (London) 181, 895 (1958)Google Scholar
  238. 235.
    Redemann, C. T., S. H. Wittwer and H. M. Sell: The Fruitsetting Factor from the Ethanol Extracts of Immature Corn Kernels. Arch. Biochem. Biophys. 32, 80 (1951)Google Scholar
  239. 236.
    Romburgh, P. Van and G. Barger: Preparation of the Betaine of Tryptophan and its Identity with the Alkaloid Hypaphorine. J. Chem. Soc. (London) 99, 2068 (1911).Google Scholar
  240. 237.
    Rosenthaler, L.: Indoxylglucoside. In: G. Klein, Handbuch der Pflanzenanalyse, Bd. III (2), S. 1060. Wien: Springer-Verlag. 1932.Google Scholar
  241. 238.
    Sack, J.: I. Voorkomen van indol in bloemengeuren. I.. Skatol in het hout van Nectandra Sp. Pharm. Weekblad Nederland 48, 307 (1911)Google Scholar
  242. 239.
    Sack, J.: Indol in Bloemengeuren. Pharm. Weekblad Nederland 48, 775 (1911)Google Scholar
  243. 240.
    Saito, J.: Über den Einfluß der Konfiguration bei Indolbildung aus Indolmilchsäure durch Bakterien. Z. physiol. Chem. (Hoppe-Seyler) 214, 28 (1933).Google Scholar
  244. 241.
    Salkowski, E.: Zur Kenntnis der Eiweißfäulnis, II: Die Skatolcarbonsäure, nach gemeinschaftlich mit H. Salkowski in Münster i. W. angestellten Versuchen. Z. physiol. Chem. (Hoppe-Seyler) 9, 8 (1885).Google Scholar
  245. 242.
    Saxton, J. E.: The Indole Alkaloids Excluding Harmine and Strychnine. Quart. Rev. Chem. Soc. (London) 10, 108 (1956).Google Scholar
  246. 243.
    Schimmel and Co.: Novelties. Semi-Annual Report, April/May 1903, p. 79.Google Scholar
  247. 244.
    Neroli Oil (Oil of Bitter Orange-blossoms). Semi-Annual Report, Oct./Nov. 1903, p. 49.Google Scholar
  248. 245.
    Semi-Annual Report, April 1914, p. 126.Google Scholar
  249. 246.
    Bericht, Jubiläums-Ausgabe 1929, S. 70.Google Scholar
  250. 247.
    Schlittler, E.: The Chemistry of Rauwolfia Alkaloids. In: R. E. Woodson, Jr., H. W. Youngken, E. Schlittler and J. A. Schneider, Rauwolfia: Botany, Pharmacognosy, Chemistry and Pharmacology, p. 50. Boston: Little, Brown Publ. 1957.Google Scholar
  251. 248.
    Schocken, V.: The Genesis of Auxin During the Decomposition of Proteins. Arch. Biochemistry 23, 198 (1949).Google Scholar
  252. 249.
    Schulze, E. und E. Winterstein: Über die aus den Keimpflanzen von Vicia sativa und Lupinus albus darstellbaren Monoaminosäuren. Z. physiol. Chem. (Hoppe-Seyler) 45, 38 (1905).Google Scholar
  253. 250.
    Schwarz, K.: Espectros U. V. dos Produtos da Decomposicao Espontánea do Acido Indolpirúvico. Arq. Inst. Biol. (Sao Paulo) 24 (6), 81 (1957).Google Scholar
  254. 251.
    Schwarz, K. e A. A. Bitancourt: A Decomposicao Espontánea de Alguns Derivados Indólicos. II. Acido Indolpirúvico. Arq. Inst. Biol. (Sao Paulo) 24 (14), 183 (1957)Google Scholar
  255. 252.
    Schwarz, K. e A. A. Bitancourt: Paper Chromatography of Unstable Substances. Science (Washington) 126, 607 (1957)Google Scholar
  256. 253.
    Schwarz, K., R. Dierberger e A. A. Bitancourt: Estudos sobre o Cancer Vegetal. I. A Natureza Química das Auxinas de Alguns Tecidos Vegetáis Normais e Tumorais. Arq. Inst. Biol. (Sao Paulo) 22, 93 (1955).Google Scholar
  257. 254.
    Seeley, R. C., C. H. Fawcett, R. L. Wain and F. Wightman: Chromatographic Investigations on the Metabolism of Certain Indole Derivatives in Plant Tissues. In: R. L. Wain and F. Wightman, Chemistry and Mode of Action of Plant Growth Substances, p. 234. London: Butterworths. 1956.Google Scholar
  258. 255.
    Shanmugasundaram, E. R. B., G. Ranganathan and P. S. Sarma: Studies on the Interrelationship among Vitamins and Amino Acids. Influence of Desoxypyridoxine on the Biosynthesis of Nicotinic and Ascorbic Acid in Germinating Pulses. Current Sei. (India) 20, 122 (1951).Google Scholar
  259. 256.
    Shanmugasundaram, E. R. B. and P. S. Sarma: Studies on the Interrelationships among Vitamins and Amino Acids. Part II. Influence of y, 3: 4 Ureylene Cyclohexyl Butyric Acid, Aminopterin and co-Methyl Pantothenic Acid on the Biosynthesis of Nicotinic Acid in Germinating Green Gram (Phaseolus aureus). J. Sei. Ind. Res. (India) 13 B, 21 (1954).Google Scholar
  260. 257.
    Shanmugasundaram, E. R. B., M. O. Tirunarayanan and P. S. Sarma: Role of Biotin in the Conversion of Tryptophan to Nicotinic Acid. Current Sei. (India) 22, 211 (1953)Google Scholar
  261. 258.
    Shaw, K. N. F., A. Mcmillan, A. G. Gudmanson and M. D. Armstrong: Preparation and Properties of 5-3-Indolyl Compounds Related to Tryptophan Metabolism. J. Organ. Chem. (USA) 23, 1171 (1958).Google Scholar
  262. 259.
    Shaw, K. N. F. and J. Trevarthen: Effect of Atmospheric Contaminants on Paper Chromatography of Urinary Indole and Phenol Acids. Nature (London) 182, 664 (1958).Google Scholar
  263. 260.
    Shaw, K. N. F. and J. Trevarthen: Exogenous Sources of Urinary Phenol and Indole Acids. Nature (London) 182, 797 (1958).Google Scholar
  264. 261.
    Skoog, F.: A Deseeded Avena Test Method for Small Amounts of Auxin and Auxin Precursors. J. Gen. Physiol. 20, 311 (1937)Google Scholar
  265. 262.
    Skoog, F.: Relationships Between Zinc and Auxins in the Growth of Higher Plants. Amer. J. Bot. 27, 939 (1940).Google Scholar
  266. 263.
    Smith, G. F.: Indoles. Part I. The Formylation of Indole and Some Reactions of 3-Formylindóle. J. Chem. Soc. ( London ) 1954, 3842.Google Scholar
  267. 264.
    Sobotka, H., N. Barsel and J. D. Chanley: The Aminochromes. Fortschr. Chem. organ. Naturstoffe 14, 217 (1957).Google Scholar
  268. 265.
    Soden, H. v.: Über ätherische Öle, welche durch Extraktion frischer Blüten mit flüchtigen Lösungsmitteln gewonnen werden (ätherische Blütenextraktöle). II. J. prakt. Chem. 110, 273 (1925).Google Scholar
  269. 266.
    Söding, H. und E. Raadts: Über das Verhalten des Wuchsstoffes der Koleoptilenspitze gegen Säure und Lauge. Planta 43, 25 (1953/54)Google Scholar
  270. 267.
    Spear, I. and K. V. Thimann: The Effect of Onion Juice on the Growth Response to Auxin. Plant Physiol. 24, 587 (1949)Google Scholar
  271. 268.
    Spies, J. R. and D. C. Chambers: Chemical Determination of Tryptophan. Analyt. Chemistry 20, 30 (1948).Google Scholar
  272. 269.
    Spooner, R. C., H. L. Richardson, S. T. Tu, W. H. Yang and C. H. Wang: Indican Content of Szechwan Indigo and the Effect of Fertilizers. J. Chinese Chem. Soc. 10, 69 (1943)Google Scholar
  273. 270.
    Stanier, R. Y. and O. Hayaishi: The Bacterial Oxidation of Tryptophan: A Study in Comparative Biochemistry. Science (Washington) 114, 326 (1951)Google Scholar
  274. 271.
    Stehsel, M. L.: I. Interrelationships between Tryptophane, Auxin and Nicotinic Acid during Development of the Corn Kernel. II. Studies on the Nature of the Auxin Complex in the Corn Kernel. Thesis, Univ. of California, Berkeley, 1950.Google Scholar
  275. 272.
    Stehsel, M. L. and S. G. Wildman: Interrelations between Tryptophane, Auxin and Nicotinic Acid During Development of the Corn Kernel. Amer. J. Bot. 37, 682 (1950).Google Scholar
  276. 273.
    Stowe, B. B.: The Production of Indoleacetic Acid by Bacteria. Biochemic. J. 61, 15 (1955).Google Scholar
  277. 274.
    Growth Promotion in Pea Epicotyl Sections by Fatty Acid Esters. Science (Washington) 128, 421 (1958).Google Scholar
  278. 275.
    Stowe, B. B., P. M. Ray and K. V. Thimann: The Enzymatic Oxidation of Indoleacetic Acid. C. r. 8e Congrès Intern. Botan., Paris 1954, Sect. 11, 135 (suppl. vol. 1957 ).Google Scholar
  279. 276.
    Stowe, B. B. and K. V. Thimann: The Paper Chromatography of Indole Compounds and Some Indole-containing Auxins of Plant Tissues. Arch. Biochem. Biophys. 51, 499 (1954).Google Scholar
  280. 277.
    Stowe, B. B., K. V. Thimann and N. P. Kefford: Further Studies of Some Plant Indoles and Auxins by Paper Chromatography. Plant Physiol. 31, 162 (1956).Google Scholar
  281. 278.
    Stromberg, V. L.: The Isolation of Bufotenine from Piptadenia peregnna. J. Amer. Chem. Soc. 76, 1707 (1954).Google Scholar
  282. 279.
    Stutz, R. E.: Enzymatic Formation of Indole-3-carboxaldehyde from Indole-3-acetic Acid. Plant Physiol. 33, 207 (1958).Google Scholar
  283. 280.
    Sumpter, W. C. and F. M. Miller: Heterocyclic Compounds with Indole and Carbazole Systems. In: A. Weissberger, Chemistry of Heterocyclic Compounds, Vol. VIII. New York: Interscience. I954Google Scholar
  284. 281.
    Tabone, J. et D. Tabone: Bio-estérification du glucose. V. Biosynthèse par Bacillus megatherium de l’ester glucosidique de l’acide indolpropionique. C. R. hebd. Séances Acad. Sci. 237, 943 (1953).Google Scholar
  285. 282.
    Tang, Y. W. and J. Bonner: The Enzymatic Inactivation of Indoleacetic Acid. I. Some Characteristics of the Enzyme Contained in Pea Seedlings. Arch. Biochemistry 13, 11 (1947)Google Scholar
  286. 283.
    Tatum, E. L. and D. Shemin: Mechanism of Tryptophan Synthesis in Neurospora. J. Biol. Chem. 209, 671 (1954).Google Scholar
  287. 284.
    Teas, H. J. and A. C. Newton: Tryptophan, Niacin and Indoleacetic Acid in Several Endosperm Mutants and Standard Lines of Maize. Plant Physiol. 26, 494 (1951).Google Scholar
  288. 285.
    Terroine, T.: Formation de l’acide nicotinique dans la germination; rôle du tryptophane. Arch. sci. physiol. 1, 445 (1947).Google Scholar
  289. 286.
    Action rhizogène du tryptophane dans les phases initiales de la germination. Rev. gén. bot. 55, 249 (1948).Google Scholar
  290. 287.
    Le cours de la synthèse nicotinique dans la germination. Existe-t-il un lien tryptophane-acide nicotinique ? C. R. hebd. Séances Acad. Sci. 226, 511 (1948).Google Scholar
  291. 288.
    Terroine, T. et J. Desvaux-Chabrol: La synthèse de l’acide nicotinique au cours de la germination. Arch. sci. physiol. 1, 117 (1947).Google Scholar
  292. 289.
    Teubner, F. G.: Identification of the Auxin Present in Apple Endosperm. Science (Washington) 118, 418 (1953).Google Scholar
  293. 290.
    Thimann, K. V.: On the Plant Growth Hormone Produced by Rhizopus suinus. J. Biol. Chem. 109, 279 (1935).Google Scholar
  294. 291.
    Thimann, K. V.: Hydrolysis of Indoleacetonitrile in Plants. Arch. Biochem. Biophys. 44, 242 (1953)Google Scholar
  295. 292.
    Thimann, K. V.: Studies on the Growth and Inhibition of Isolated Plant Parts. V. The Effects of Cobalt and Other Metals. Amer. J. Bot. 43, 241 (1956).Google Scholar
  296. 293.
    Thimann, K. V.: Auxin Activity of Some Indole Derivatives. Plant Physiol. 33, 311 (1958).Google Scholar
  297. 294.
    Thimann, K. V. and G. M. Curry: Phototropism and Phototaxis. In: H. S. Mason and M. Florkin, Comparative Biochemistry, Vol. I. New York: Academic Press. 1959 (in press).Google Scholar
  298. 295.
    Thimann, K. V. and A. C. Leopold: Plant Growth Hormones. In: G. Pincus and K. V. Thimann, The Hormones, Vol. III, p. 1. New York: Academic Press. 1955.Google Scholar
  299. 296.
    Thimann, K. V. and S. Mahadevan: Enzymatic Hydrolysis of Indoleacetonitrile. Nature (London) 181, 1466 (1958).Google Scholar
  300. 297.
    Thimann, K. V. and C. L. Schneider: The Role of Salts, Hydrogen-Ion Concentration and Agar in the Response of the A vena Coleoptile to Auxins. Amer. J. Bot. 25, 270 (1938).Google Scholar
  301. 298.
    Differential Growth in Plant Tissues. Amer. J. Bot. 25, 627 (1938).Google Scholar
  302. 299.
    Thomas, F., W. P. Bloxam and A. G. Perkin: Indican. Part III. Chem. Soc. (London) 95, 824 (1909)Google Scholar
  303. 300.
    Towers, G. H. N., J. F. Thompson and F. C. Steward: The Detection of the Keto Acids of Plants. A Procedure Based on their Conversion to Amino Acids. J. Amer. Chem. Soc. 76, 2392 (1954)Google Scholar
  304. 301.
    Tsuchihashi, R. and S. Tasaki: Essential Oil and Wax of Shuei Flowers (Jasminium odoratissimum L.). J. Chem. Ind. (Tokyo) 21, 1117 (1918) [J. Soc. Chem. Ind. (London) 38 A, 117 (1919)].Google Scholar
  305. 302.
    Tsui, C.: The Role of Zinc in Auxin Synthesis in the Tomato Plant. Amer. J. Bot. 35, 172 (1948).Google Scholar
  306. 303.
    Udenfriend, S., E. Titus and H. Weissbach: The Identification of 5-Hydroxy- 3-indoleacetic Acid in Normal Urine and a Method for its Assay. J. Biol. Chem. 216, 499 (1955).Google Scholar
  307. 304.
    Udenfriend, S., E. Titus, Weissbach and R. E. Peterson: Biogenesis and Metabolism of 5-Hydroxyindole Compounds. J. Biol. Chem. 219, 335 (1956).Google Scholar
  308. 305.
    Veldstra, H.: The Relation of Chemical Structure to Biological Activity in Growth Substances. Annu. Rev. Plant. Physiol. 4, 151 (1953).Google Scholar
  309. 306.
    Verschaffelt, E.: Une réaction permettant de déceler l’indol dans les parfums des fleurs. Ree. trav. bot. Néerl. 1, 120 (1904).Google Scholar
  310. 307.
    Vickery, H. B., G. W. Pucher, R. Schoenheimer and D. Rittenberg: The Assimilation of Ammonia Nitrogen by the Tobacco Plant: a Preliminary Study with Isotopic Nitrogen. J. Biol. Chem. 135, 531 (1940).Google Scholar
  311. 308.
    Virtanen, A. I., A. A. Arhimo, J. Sundman und L. Jännes: Vorkommen und Bedeutung der Oxalessigsäure in grünen Pflanzen. J. prakt. Chem. 162, 71 (1943)Google Scholar
  312. 309.
    Virtanen, A. I. and T. Laine: Investigations on the Aminoacids of Plants. I. Tryptophan Content of Leguminous Plants at Different Stages of Growth. Biochemic. J. 30, 1509 (1936).Google Scholar
  313. 310.
    Virtanen, A. I. and T. Laine: Biological Fixation of Nitrogen. Nature (London) 142, 165 (1938).Google Scholar
  314. 311.
    Waalkes, T. P., A. Sjoerdsma, C. R. Creveling, H. Weissbach and S. Udenfriend: Serotonin, Norepinephrine, and Related Compounds in Bananas. Science (Washington) 127, 648 (1958).Google Scholar
  315. 312.
    Wagenknecht, A. C. and R. H. Burris: Indoleacetic Acid Inactivating Enzymes from Bean Roots and Pea Seedlings. Arch. Biochemistry 25, 30 (1950).Google Scholar
  316. 313.
    Waters, K. L.: The Preparation of oc-Alkoximino Acids and Their Derivatives. Thesis, Univ. of Maryland, 1945.Google Scholar
  317. 314.
    Waters, K. L.: The α-Keto Acids. Chem. Rev. 41, 585 (1947).Google Scholar
  318. 315.
    Weehuizen, F.: Over Indol in Bloemen. Pharm. Weekbl. Nederland 45, 1325 (1908).Google Scholar
  319. 316.
    Weehuizen, F.: Über indoloide Düfte. Ree. trav. bot. Néerl. 8, 97 (1911).Google Scholar
  320. 317.
    Weller, L. E., S. H. Wittwer and H. M. Sell: The Detection of 3-Indole-acetic Acid in Cauliflower Heads. Chromatographic Behavior of Some Indole Compounds. J. Amer. Chem. Soc. 76, 629 (1954)Google Scholar
  321. 318.
    Werle, E. und A. Raub: Über Vorkommen, Bildung und Abbau biogener Amine bei Pflanzen unter besonderer Berücksichtigung des Histamins. Biochem. Z. 318, 538 (1948)Google Scholar
  322. 319.
    Werle, E. und F. Roewer: Monaminoxydase in Pflanzen. Biochem. Z. 320, 298 (1950)Google Scholar
  323. 320.
    White, E. P.: Alkaloids of the Leguminosae. XIII. Isolation of Tryptamine from some Acacia Species. New Zealand J. Sei. Tech. 25 B, 157 (1944).Google Scholar
  324. 321.
    Wichmann, A. W.: Kristallografische Aanteekeningen, Hypaphorin. Mededeel. Lands Plantentuin, Buitenzorg 25, 197 (1898).Google Scholar
  325. 322.
    Wieland, H., W. Konz und H. Mittasch: Die Konstitution von Bufotenin und Bufotenidin. Über Kröten-Giftstoffe. VII. Liebigs Ann. Chem. 513, 1 (1934)Google Scholar
  326. 323.
    Wieland, T. und C. Y. Hsing: Synthese und Konstitution des Gramins. Liebigs Ann. Chem. 536, 188 (1936).Google Scholar
  327. 324.
    Wieland, T., W. Hützel und H. Merz: Über das Vorkommen von Bufotenin im gelben Knollenblätterpilz. Liebigs Ann. Chem. 581, 10 (1953).Google Scholar
  328. 325.
    Wildman, S. G., M. G. Ferri and J. Bonner: The Enzymatic Conversion of Tryptophane to Auxin by Spinach Leaves. Arch. Biochemistry 13, 131 (1947)Google Scholar
  329. 326.
    Wildman, S. G. and R. M. Muir: Observations on the Mechanism of Auxin Formation in Plant Tissues. Plant Physiol. 24, 84 (1949).Google Scholar
  330. 327.
    Wilkinson, S.: 5-Methoxy-N-methyltryptamine: A New Indole Alkaloid from Phalaris arundinacea L. J. Chem. Soc. ( London ) 1958, 2079.Google Scholar
  331. 328.
    Wiltshire, G. H.: The Oxidation of Tryptophan in Pea Seedling Tissues and Extracts. Biochemic. J. 55, 408 (1953).Google Scholar
  332. 329.
    Woods, D. D.: Indole Formation by Bacterium coli. I. The Breakdown of Tryptophan by Washed Suspensions of Bacterium coli. Biochemic. J. 29, 640 (1935)Google Scholar
  333. 330.
    Indole Formation by Bacterium coli. II. The Action of Washed Suspensions of Bacterium coli on Indole Derivatives. Biochemic. J. 29, 649 (1935).Google Scholar
  334. 331.
    Yamaki, T.: A New Method of Auxin Determination. Misc. Rep. Inst. Nat. Resources (Tokyo) 17 /18, 180 (1950).Google Scholar
  335. 332.
    Yamaki, T. and K. Nakamura: Formation of Indoleacetic Acid in Maize Embryo. Sei. Papers Coll. Gen. Educ., Univ. Tokyo 2, 81 (1952).Google Scholar
  336. 333.
    Yanofsky, C.: The Enzymatic Conversion of Anthranilic Acid to Indole. J. Biol. Chem. 223, 171 (1956).Google Scholar
  337. 334.
    Yanofsky, C. and M. Rachmeler: The Exclusion of Free Indole as an Intermediate in the Biosynthesis of Tryptophan in Neurospora crassa. Biochim. Biophys. Acta 28, 640 (1958).Google Scholar
  338. 335.
    Yoshida, T. and S. Fukuyama: Metabolic Changes in N-Substituted Amino Acids. VII. Demethylase. J. Biochem. Japan 34, 429 (1941).Google Scholar
  339. 336.
    Youssef, E. und O. Kiermeyer: Zur Photolyse von Indol-3-acetonitril. Planta 49, 607 (1957).Google Scholar
  340. 337.
    Yurashevskii, N. K.: Alkaloids of Girgensohnia diptera BGE., Family Chenopodiaceae. II. J. Gen. Chem. (USSR) 10, 1781 (1940).Google Scholar
  341. 338.
    Alkaloids of Arthrophytum leptocladum, M. Pop., Family Chenopodiaceae. J. Gen. Chem. (USSR) 11, 157 (1941).Google Scholar
  342. 339.
    Yurashevskii, N. K. and S. I. Stepanov: Alkaloids of Girgensohnia diptera BGE., Family Chenopodiaceae. J. Gen. Chem. (USSR) 9, 2203 (1939)Google Scholar
  343. 340.
    Zimmerman, P. W., A. E. Hitchcock and F. Wilcoxon: Responses of Plants to Growth Substances Applied as Solutions and as Vapors. Contrib. Boyce Thompson Inst. 10, 363 (1939)Google Scholar

Copyright information

© Springer-Verlag in Vienna 1959

Authors and Affiliations

  • Bruce B. Stowe
    • 1
  1. 1.CambridgeUSA

Personalised recommendations