Advertisement

Abstract

These are exciting times in the study of protein synthesis. We are beginning to gain some insight into the mechanism by which amino acids are assembled into the peptide chains of proteins and to achieve some understanding of the way in which information is transferred from nucleus to cytoplasm, there to be used in the construction of the many individual proteins of the cell. The flood of new information and insight concerning protein synthesis has in part come from elegant enzymology and biochemistry applied to the study of the process. In part, and in a large part, however, it has come from a better understanding of the structure of the cell and from improved methods for the separation of cytoplasm into its subcellular constituents. These studies have focused attention upon the microsomes as the engines of protein synthesis. This review will therefore first consider the microsomes—their general role in protein synthesis, their origin and their structure. We shall then go on to the biochemistry and enzymology of protein synthesis insofar as we understand it today. Work on animal tissues and on microbial cells, as well as on plant tissues has contributed to our knowledge of protein synthesis, and although this review is particularly directed toward an understandig of plants, it will be helpful to draw on work with other materials.

Keywords

Protein Synthesis Ribonucleic Acid Microsomal Protein Soluble Ribose Nucleic Acid Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AMP

adenosine diphosphate

AMP

adenosine monophosphate

ATP

adenosine triphosphate

DNA

deoxyribonucleic acid

RNA

ribonucleic acid

TCA

trichloroacetic acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allfrey, V. G. And A. E. Mirsky: Some Aspects Of Ribonucleic Acid Synthesis In Isolated Cell Nuclei. Proc. Nat. Acad. Sci. (USA) 43, 821 (1957).CrossRefGoogle Scholar
  2. 2.
    Allfrey, V. G., A. E. Mirsky And S. Osawa: Protein Synthesis In Isolated Cell Nuclei. J. Gen. Physiol. 40, 451 (1957).CrossRefGoogle Scholar
  3. 3.
    Berg, P.: Participation Of Adenyl-Acetate In The Acetate-Activating System. J. Amer. Chem. Soc. 77, 3163 (1955).CrossRefGoogle Scholar
  4. 4.
    Bonner, J.: Plant Biochemistry. New York: Academic Press. 1950.Google Scholar
  5. 5.
    Boorsook, H.: Enzymatic Syntheses Of Peptide Bonds. In: D. Greenberg, Chemical Pathways Of Metabolism, Vol. Ii, P. 173. New York: Academic Press. 1954; Cf. Fortschr. Chem. Organ. Naturstoffe 9, 212 (1952).Google Scholar
  6. 6.
    Boorsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley And P. H. Lowy: The Uptake In Vitro Of C14-Labeled Glycine, L-Leucine, And L-Lysine By Different Components Of Guinea Pig Liver Homogenate. J. Biol. Chem. 184, 529 (1950).Google Scholar
  7. 7.
    Brachet, J.: Effects Of Ribonuclease On The Metabolism Of Living Root-Tip Cells. Nature (London) 174, 876 (1954).CrossRefGoogle Scholar
  8. 8.
    Brachet, J.: Action Of Ribonuclease And Ribonucleic Acid On Living Amoebae. Nature (London) 175, 851 (1955).CrossRefGoogle Scholar
  9. 9.
    Brachet, J., H. Chantrenne Et F. Vanderhaeghe: Recherches Sur Les Interactions Biochimiques Entre Le Noyau Et Le Cytoplasme Chez Les Organismes Unicellulaires. Ii. Acetabularia Mediterranea. Biochim. Biophys. Acta 18 544 (1955).CrossRefGoogle Scholar
  10. 10.
    Campbell, P. N., O. Greengard And B. A. Kernot: Amino Acid Incorporation Into Serum Albumin In Microsome Preparations From Regenerating Rat Liver. Biochemic. J. 68, 18 P (1958).Google Scholar
  11. 11.
    Chao, Fu-Chuan: Dissociation Of Macromolecular Ribonucleoprotein Of Yeast. Arch. Biochem. Biophys. 70, 426 (1957).CrossRefGoogle Scholar
  12. 12.
    Chao, Fu-Chuan And H. K. Schachman: The Isolation And Characterization Of A Macromolecular Ribonucleoprotein From Yeast. Arch. Biochem. Biophys. 61, 220 (1956).CrossRefGoogle Scholar
  13. 13.
    Chibnall, A. C.: Protein Metabolism In Rooted Runner-Bean Leaves. New Phytologist 53, 31 (1954).CrossRefGoogle Scholar
  14. 14.
    Chibnall, A. C. And G. H. Wiltshire: A Study With Isotopic Nitrogen Of Protein Metabolism In Detached Runner-Bean Leaves. New Phytologist 53, 38 (1954).CrossRefGoogle Scholar
  15. 75.
    Clark, J. M., Jr.: Studies On Amino Acid Activation And Protein Synthesis. Thesis, Calif. Instit. Technology, 1958.Google Scholar
  16. 16.
    Clendenning, K. A.: Biochemistry Of Chloroplasts In Relation To The Hill Reaction. Annu. Rev. Plant Physiol. 8, 137 (1957).CrossRefGoogle Scholar
  17. 17.
    J. Danielsson, C. E.: Seed Globulins Of The Gramineae And Leguminosae. Biochemic. J. 44, 387 (1949).Google Scholar
  18. 18.
    Davie, E. W., V. V. Koningsberger And F. Lipmann: The Isolation Of A Tryptophan-Activating Enzyme From Pancreas. Arch. Biochem. Biophys. 65, 21 (1956).CrossRefGoogle Scholar
  19. 19.
    De Moss, J. A., S. M. Genuth And G. D. Novelli: The Enzymatic Activation Of Amino Acids Via Their Acyl-Adenylate Derivatives. Proc. Nat. Acad. Sci. (USA) 42, 325 (1956).CrossRefGoogle Scholar
  20. 20.
    De Robertis, E.: Electron Microscope Observations On The Submicroscopic Morphology Of The Meiotic Nucleus And Chromosomes. J. Biophys. Biochem. Cytol. 2, 785 (1956).CrossRefGoogle Scholar
  21. 21.
    Elliott, W. H.: Studies On The Enzymic Synthesis Of Glutamine. Biochemic. J. 49, 106 (1951).Google Scholar
  22. 22.
    Engelbrecht, L.: Über Den Stickstoff-Stoffwechsel Isolierter Organe. Die Kulturpflanze, Beiheft 1, 86 (1956).Google Scholar
  23. 23.
    Goddard, D. R. And H. A. Stafford: Localization Of Enzymes In The Cells Of Higher Plants. Ann. Rev. Plant Physiol. 5, 115 (1954).CrossRefGoogle Scholar
  24. 24.
    Goldstein, L. And W. Plaut: Direct Evidence For Nuclear Synthesis Of Cytoplasmic Ribose Nucleic Acid. Proc. Nat. Acad. Sci. (USA) 41, 874 (1955).CrossRefGoogle Scholar
  25. 25.
    Granick, S.: Quantitative Isolation Of Chloroplasts From Higher Plants. Amer. J. Bot. 25, 558 (1938).CrossRefGoogle Scholar
  26. 26.
    Hackett, D. P.: Recent Studies On Plant Mitochondria. Int. Rev. Cytology 4, 143 (1955).CrossRefGoogle Scholar
  27. 27.
    Hall, B. And P. Doty: Physical-Chemical Studies Of The Ribonucleic Acid Of Microsomal Particles. Program And Abstracts, Biophysical Society, 1958 Meeting, Cambridge, Mass., P. 15.Google Scholar
  28. 28.
    Hoagland, M. B.: An Enzymic Mechanism For Amino Acid Activation In Animal Tissues. Biochim. Biophys. Acta 16, 288 (1955).CrossRefGoogle Scholar
  29. 29.
    Hoagland, M. B., E. B. Keller And P. C. Zamecnik: Enzymatic Carboxyl Activation Of Amino Acids. J. Biol. Chem. 218, 345 (1956).Google Scholar
  30. 30.
    Hoagland, M. B., P. C. Zamecnik And M. L. Stephenson: Intermediate Reactions In Protein Biosynthesis. Biochim. Biophys. Acta 24, 215 (1957).CrossRefGoogle Scholar
  31. 31.
    Hoagland, M. B., P. C. Zamecnik, N. Sharon, F. Lipmann, M. P. Stulberg And P. D. Boyer: Oxygen Transfer To Amp In The Enzymic Synthesis Of The Hydroxamate Of Tryptophan. Biochim. Biophys. Acta 26, 215 (1957).CrossRefGoogle Scholar
  32. 32.
    Holley, R. W.: An Alanine-Dependent, Ribonuclease-Inhibited Conversion Of Amp To Atp, And Its Possible Relationship To Protein Synthesis. J. Amer. Chem. Soc. 79, 658 (1957).CrossRefGoogle Scholar
  33. 33.
    Jagendorf, A. T.: Purification Of Chloroplasts By A Density Technique. Plant Physiol. 30, 138 (1955)CrossRefGoogle Scholar
  34. 34.
    Jagendorf, A. T. And S. G. Wildman: The Proteins Of Green Leaves. Vi. Centrifugal Fractionation Of Tobacco Leaf Homogenates And Some Properties Of Isolated Chloroplasts. Plant Physiol. 29, 270 (1954).CrossRefGoogle Scholar
  35. 35.
    Jeener, R. And D. Szafarz: Relations Between The Rate Of Renewal And The Intracellular Localization Of Ribonucleic Acid. Arch. Biochemistry 26, 54 (1950).Google Scholar
  36. 36.
    Littlefield, J. W. And E. B. Keller: Incorporation Of C14-Amino Acids Into Ribonucleoprotein Particles From The Ehrlich Mouse Ascites Tumor. J. Biol. Chem. 224, 13 (1957).Google Scholar
  37. 37.
    Littlefield, J. W., E. B. Keller, J. Gross And P. C. Zamecnik: Studies On Cytoplasmic Ribonucleoprotein Particles From The Liver Of The Rat. J. Biol. Chem. 217, 111 (1955).Google Scholar
  38. 38.
    Lyttleton, J. W.: Protein Of Pasture Plants. Cytoplasmic Protein Of White Clover And Italian Ryegrass. Biochemic. J. 64, 70 (1956). 3Google Scholar
  39. 39.
    Mckee, H. S., R. N. Robertson And J. B. Lee: Physiology Of Pea Fruits. I. The Developing Fruit. Austral. J. Biol. Sci. 8, 137 (1955).Google Scholar
  40. 40.
    Mcmaster-Kaye, R. And J. H. Taylor: Evidence For Two Metabolically Distinct Types Of Ribonucleic Acid In Chromatin And Nucleoli. J. Biophys. Biochem. Cytol. 4, 5 (1958).CrossRefGoogle Scholar
  41. 41.
    Millerd, A.: Mitochondria And Microsomes. In: Handbuch Der Pflanzenphysiologie, Vol. Ii, P. 573. Berlin-Göttingen-Heidelberg: Springer-Verlag. 1956.Google Scholar
  42. 42.
    Millerd, A. And J. Bonner: Biology Of Plant Mitochondria. J. Histochem. Cytochem. 1, 254 (1953).CrossRefGoogle Scholar
  43. 43.
    Millerd, A., J. Bonner, B. Axelrod And R. S. Bandurski: Oxidative And Phosphorylative Activity Of Plant Mitochondria. Proc. Nat. Acad. Sci. (USA) 37, 855 (1951).CrossRefGoogle Scholar
  44. 44.
    Mitchell, M. B. And H. K. Mitchell: A Case Of ”Maternal“ Inheritance In Neurospora Crassa. Proc. Nat. Acad. Sci. (USA) 38, 442 (1952).CrossRefGoogle Scholar
  45. 45.
    Mitchell, M. B., H. K. Mitchell And A. Tissieres: Mendelian And Non- Mendelian Factors Affecting The Cytochrome System In Neurospora Crassa. Proc. Nat. Acad. Sci. (USA) 39, 606 (1953).CrossRefGoogle Scholar
  46. 46.
    Mothes, K. Und L. Engelbrecht: Über Den Stickstoffumsatz In Blattstecklingen. Flora 143, 428 (1956).Google Scholar
  47. 47.
    Ogata, K. And H. Nohara: The Possible Role Of The Ribonucleic Acid (RNA) of the pH 5 Enzyme in Amino Acid Activation. Biochim. Biophys. Acta 25, 659 (1957).CrossRefGoogle Scholar
  48. 48.
    Oota, Y. And S. Osawa: Migration Of ”Storage Pna“ From Cotyledon Into Growing Organs Of Bean Seed Embryo. Experientia 10, 254 (1954).CrossRefGoogle Scholar
  49. 49.
    Oota, Y. And S. Osawa: Relation Between Microsomal Pentose Nucleic Acid (PNA) and Protein Synthesis In The Hypocotyl Of Germinating Bean Embryo. Biochim. Biophys. Acta 15, 162 (1954).CrossRefGoogle Scholar
  50. 50.
    Osawa, S., K. Takata And Y. Hotta: Some Aspects Of The Relation Between Nuclear And Cytoplasmic Ribonucleic Acids. Biochim. Biophys. Acta 25, 656 (1957).CrossRefGoogle Scholar
  51. 51.
    Palade, G. E.: A Small Particulate Component Of The Cytoplasm. J. Biophys. Biochem. Cytol. 1, 59 (1955).CrossRefGoogle Scholar
  52. 52.
    Pearsall, W. H. And M. C. Billimoria: Effects Of Age And Of Season Upon Protein Synthesis In Detached Leaves. Ann. Botany (N. S.) 2, 317 (1938).Google Scholar
  53. 53.
    Pearsall, W. H. And M. C. Billimoria: The Influence Of Light Upon Nitrogen Metabolism In Detached Leaves. Ann. Botany (N. S.) 3, 601 (1939).Google Scholar
  54. 54.
    Porter, K. R.: Electron Microscopy Of Basophilic Components Of Cytoplasm. J. Histochem. Cytochem. 2, 346 (1954).CrossRefGoogle Scholar
  55. 55.
    Raacke, I. D.: Protein Synthesis In Ripening Pea Seeds. I. Analysis Of Whole Seeds. Biochemic. J. 66, 101 (1957).Google Scholar
  56. 56.
    Racusen, D. W. And S. Aronoff: Metabolism Of Soybean Leaves. Vi. Exploratory Studies In Protein Metabolism. Arch. Biochem. Biophys. 51, 68 (1954).CrossRefGoogle Scholar
  57. 57.
    Robinson, E. And R. Brown: Cytoplasmic Particles In Bean Root Cells. Nature (London) 171, 313 (1953).CrossRefGoogle Scholar
  58. 58.
    Rogers, B.: Studies On The Amino Acid Metabolism Of Higher Plants. Thesis, Calif. Instit. Technology, 1955.Google Scholar
  59. A. Sato, C., J. R. Pilcher And P. O. P. Ts’o: Phosphate Metabolism In Pea Shoots. Plant Physiol. 32, Xn (1957).Google Scholar
  60. 59.
    Schachman, H. K., A. B. Pardee And R. Y. Stanier: Studies On The Macro- Molecular Organization Of Microbial Cells. Arch. Biochem. Biophys. 38, 245 (1952).CrossRefGoogle Scholar
  61. 60.
    Schweet, R. S.: Purification And Properties Of Tyrosine Activating Enzyme. Federat. Proc. (Amer. Soc. exp. Biol.) 16, 244 (1957).Google Scholar
  62. 61.
    Schweet, R. S., F. C. Bovard, E. Allen And E. Glassman: The Incorporation Of Amino Acids Into Ribonucleic Acids. Proc. Nat. Acad. Sci. (USA) 44, 173 (1958).CrossRefGoogle Scholar
  63. 62.
    Schweet, R. S., R. W. Holley And E. H. Allen: Amino Acid Activation In Hog Pancreas. Arch. Biochem. Biophys. 71, 311 (1957).CrossRefGoogle Scholar
  64. 63.
    Shimura, K. And H. Borsook: Absence Of Rna Synthesis In Reticulocytes (unpublished); cf. Abstr. Int. Biochem. Kongr. Vienna (1958).Google Scholar
  65. 64.
    Shimura, K., J. Sato, S. Suto And A. Kikuchi: Amino Acid Composition Of Ribonucleoprotein Of Silk Gland. J. Biochemistry 43, 217 (1956).Google Scholar
  66. 65.
    Simkin, J. L. And T. S. Work: Protein Synthesis In Guinea-Pig Liver. Biochemic. J. 65, 307 (1957).Google Scholar
  67. 66.
    Simkin, J. L. And T. S. Work: Incorporation Of Radioactive Amino Acids Into Proteins Of The Microsome Fraction Of Guinea-Pig Liver In A Cell-Free System. Biochemic. J. 67, 617 (1957).Google Scholar
  68. 67.
    Sjostrand, F. S. And V. Hanzon: Membrane Structure Of Cytoplasm And Mitochondria In Exocrine Cells Of Mouse Pancreas As Revealed By High Resolution Electron Microscopy. Exptl. Cell Res. 7, 393 (1954).CrossRefGoogle Scholar
  69. 68.
    Skreb-Guilcher, Y.: Influence De La Ribonuclease Sur La Teneur En Adenosine- Triphosphate (ATP) et la consommation d’oxygene des amibes vivantes. Bio- chim. Biophys. Acta 17, 599 (1955).CrossRefGoogle Scholar
  70. 69.
    Slautterback, D. B.: Electron Microscopic Studies Of Small Cytoplasmic Particles (Microsomes). Exptl. Cell Res. 5, 173 (1953).CrossRefGoogle Scholar
  71. 70.
    Snellman, O. And C. E. Danielsson: An Experimental Study Of The Biosynthesis Of The Reserve Globulins In Pea Seeds. Exptl. Cell Res. 5, 436 (1953).CrossRefGoogle Scholar
  72. 71.
    Stafford, H. A.: Intracellular Localization Of Enzymes In Pea Seedlings. Physiol. Plantarum 4, 696 (1951).CrossRefGoogle Scholar
  73. 72.
    Stephenson, M. L., K. V. Thimann And P. C. Zamecnik: Incorporation Of C14-Amino Acids Into Proteins Of Leaf Disks And Cell-Free Fractions Of Tobacco Leaves. Arch. Biochem. Biophys. 65, 194 (1956).CrossRefGoogle Scholar
  74. 73.
    Stich, H. And W. Plaut: The Effect Of Ribonuclease On Protein Synthesis In Nucleated And Enucleated Fragments Of Acetabularia. J. Biophys. Biochem. Cytol. 4, 119 (1958).CrossRefGoogle Scholar
  75. 74.
    Stumpf, P. K. And W. D. Loomis: Observations On A Plant Amide Enzyme System Requiring Manganese And Phosphate. Arch. Biochemistry 25, 451 (1950).Google Scholar
  76. 75.
    Takahashi, W. N.: Changes In Nitrogen And Virus Content Of Detached Tobacco Leaves In Darkness. Phytopathol. 31, 1117 (1941).Google Scholar
  77. 76.
    Ts’o, P. O. P., J. Bonner And H. Dintzis: On The Similarity Of Amino Acid Composition Of Microsomal Nucleoprotein Particles. Arch. Biochem. Biophys. 76, 225 (1958).CrossRefGoogle Scholar
  78. 77.
    Ts’o, P. O. P., J. Bonner And J. Vinograd: Microsomal Nucleoprotein Particles From Pea Seedlings. J. Biophys. Biochem. Cytol. 2, 451 (1956).CrossRefGoogle Scholar
  79. 78.
    Ts’o, P. O. P., J. Bonner And J. Vinograd: Physical And Chemical Properties Of Microsomal Nucleoprotein Particles From Pea Seedlings. Plant Physiol. 32, Xiii (1957).Google Scholar
  80. 79.
    Ts’o, P. O. P. And C. Sato: Distribution Of Ribonucleic Acid And Protein Among Subcellular Components Of Pea Epicotyls. Plant Physiol, (in press).Google Scholar
  81. 80.
    Varner, J. E. And G. C. Webster: Mechanism Of Enzymatic Synthesis Of Glutamine. Abstr., Amer. Soc. Plant Physiol., Gainesville, 1954, P. 33.Google Scholar
  82. 81.
    Von Wettstein, D.: Genetics And The Submicroscopic Cytology Of Plastids. Hereditas 43, 303 (1957).CrossRefGoogle Scholar
  83. 82.
    Watson, M. L.: The Nuclear Envelope. Its Structure And Relation To Cytoplasmic Membranes. J. Biophys. Biochem. Cytol. 1, 257 (1955).CrossRefGoogle Scholar
  84. 83.
    Webster, G. C.: Peptide-Bond Synthesis In Higher Plants. I. The Synthesis Of Glutathione. Arch. Biochem. Biophys. 47, 241 (1953).CrossRefGoogle Scholar
  85. 84.
    Webster, G. C.: Enzymatic Synthesis Of Glutamine In Higher Plants. Plant Physiol. 28, 724 (1953).CrossRefGoogle Scholar
  86. 85.
    Webster, G. C.: Enzymatic Synthesis Of Gamma-Glutamyl-Cysteine In Higher Plants. Plant Physiol. 28, 728 (1953).CrossRefGoogle Scholar
  87. 86.
    Webster, G. C.: An Energy Dependent Incorporation Of Amino Acids Into The Protein Of Plant Mitochondria. Plant Physiol. 29, 202 (1954).CrossRefGoogle Scholar
  88. 87.
    Webster, G. C.: Incorporation Of Radioactive Amino Acids Into The Proteins Of Plant Tissue Homogenates. Plant Physiol. 30, 351 (1955).CrossRefGoogle Scholar
  89. 88.
    Webster, G. C.: Amino Acid Incorporation By Intact And Disrupted Ribonucleoprotein Particles. J. Biol. Chem. 229, 535 (1957).Google Scholar
  90. 89.
    Webster, G. C. And J. E. Varner: Peptide-Bond Synthesis In Higher Plants. Ii. Studies On The Mechanism Of Synthesis Of Y-Glutamylcysteine. Arch. Biochem. Biophys. 52, 22 (1954).CrossRefGoogle Scholar
  91. 90.
    Webster, G. C. And J. E. Varner:. On The Mechanism Of The Enzymatic Synthesis Of Glutamine. J. Amer. Chem. Soc. 76, 633 (1954).CrossRefGoogle Scholar
  92. 91.
    Webster, G. C. And J. E. Varner:. Peptide-Bond Synthesis In Higher Plants. Iii. The Formation Of Glutathione From Y-Glutamylcysteine. Arch. Biochem. Biophys. 55, 95 (1955).CrossRefGoogle Scholar
  93. 92.
    Webster, G. C. And J. E. Varner:. Aspartate Metabolism And Asparagine Synthesis In Plant System. J. Biol. Chem. 215, 91 (1955).Google Scholar
  94. 93.
    Wildman, S. G. And J. Bonner: The Proteins Of Green Leaves. I. Isolation, Enzymatic Properties And Auxin Content Of Spinach Cytoplasmic Proteins. Arch. Biochemistry 14, 381 (1947).Google Scholar
  95. 94.
    Wood, J. G. And D. H. Cruickshank: The Metabolism Of Starving Leaves. 5. Changes In Amounts Of Some Amino Acids During Starvation Of Grass Leaves; And Their Bearing On The Nature Of The Relationship Between Proteins And Amino Acids. Austral. J. Exptl. Biol. Med. Sci. 22, 111 (1944).CrossRefGoogle Scholar

Copyright information

© Wien Springer Verlag 1958

Authors and Affiliations

  • James Bonner
    • 1
  1. 1.PasadenaUSA

Personalised recommendations