Only ten years ago, Svynge (196) ended a review on the significance of the partial hydrolytic products of proteins with this statement:

“To conclude, it seems that the main obstacle to progress in the study of protein structure by methods of organic chemistry is inadequacy of technique rather than any theoretical difficulty. It is likely that the development of new methods of work in this field will lead us to a much clearer understanding of the proteins.”


Amino Acid Composition Silk Fibroin Partial Hydrolysate Fraction Collector Displacement Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akabori, S., K. Ohno and K. Narita: On the Hydrazinolysis of Proteins and Peptides: A Method lor the Characterization of Carboxyl-terminal Amino Acids in Proteins. Bull. Chem. Soc. Japan 25, 214 (1952).Google Scholar
  2. 1a.
    Åqvist, S. E. G.: The Use of Starch Chromatography and Ion Exchange Resin for Large Scale Separations of N15-Labeled Amino Acids. Acta Chem. Scand. 5, 1031 (1951).Google Scholar
  3. 2.
    Bailey, K.: End-Group Assay in Some Proteins of the Keratin-Myosin Group. Biochemie. J. 49, 23 (1951).Google Scholar
  4. 3.
    Baker, C. G. and H. A. Sober: Application of Ion Exchange Chromatography to the Enzymatic Resolution of Amino Acids. J. Amer. Chem. Soc. 75, 4058 (1953).Google Scholar
  5. 4.
    Baptist, V. H. and H. B. Bull: Determination of the Terminal Carboxyl Residues of Peptides and of Proteins. J. Amer. Chem. Soc. 75, 1727 (1953).Google Scholar
  6. 5.
    Biserte, G. et P. Boulanger: Fractionnement d’hydrolysats enzymatiques de protéines. C. R. hebd. Séances Acad. Sci. 230, 583 (1950).Google Scholar
  7. 6.
    Blackburn, S.: The Use of Buffered Columns in the Chromatographie Separation of 2,4-Dinitrophenyl Amino Acids. Biochemie. J. 45, 579 (1949).Google Scholar
  8. 7.
    Blackburn, S. and A. Robson: A Radiochemical Method for the Microestimation of α-Amino Acids Separated on Paper Partition Chromatograms. Biochemie. J. 54, 295 (1953).Google Scholar
  9. 8.
    Block, R. J. and D. Bulling: The Amino Acid Composition of Proteins and Foods. 2nd edit. Springfield, 111.: Charles C. Thomas. 1951.Google Scholar
  10. 9.
    Boardman, N. K. and S. M. Partridge: Separation of Neutral Proteins on Ion Exchange Resins. Nature (London) 171, 208 (1953).Google Scholar
  11. 10.
    Boggs, L. A., L. S. Cuendet, M. Dubois and F. Smith: Simple Fractionating Device for Chromatographie Analysis. Application to the Study of Carbohydrates. Analyt. Chemistry 24, 1148 (19).Google Scholar
  12. 11.
    Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: A Peptide Fraction in Liver. J. Biol. Chem. 179, 705 (19).Google Scholar
  13. 12.
    Bowes, J.H.: private communication.Google Scholar
  14. 13.
    Bowes, J. H. and J. A. Moss: Free Amino Groups of Collagen. Nature (London) 168, 514 (1951).Google Scholar
  15. 13a.
    Bowes, J. H.: The Reaction of Fluorodinitrobenzene with the α-and ε-Amino Groups of Collagen. Biochemie. J. 55, 735 (1953).Google Scholar
  16. 14.
    Brenner, M. und C. H. Burckhardt: Die Adsorption einiger Di-und Tripeptide an synthetischen organischen Ionenaustauschern. Helv. Chim. Acta 34, 1070 (1951).Google Scholar
  17. 15.
    Brenner, M. und R. Frey: Über die Entsalzung von Lösungen neutraler Aminosäuren mit Hilfe von Ionenaustauschern und ein neues präparatives Verfahren zur Gruppentrennung von Aminosäuren in Eiweißhydrolysaten. Helv. Chim. Acta 34, 1701 (1951).Google Scholar
  18. 16.
    Brimley, R. C. and A. Snow: Automatic Apparatus for Continuous Collection of Liquid Samples. J. Sci. Instruments 26, 73 (1949).Google Scholar
  19. 17.
    Carson, J. F.: The Free Amino Groups of Subtilin. J. Amer. Chem. Soc. 74, 1480 (1952).Google Scholar
  20. 18.
    Chibnall, A. C. and M. W. Rees: The Amide and Free Carboxyl Groups of Insulin. Biochemie. J. 48, xlvii (1951).Google Scholar
  21. 19.
    — Identification and Estimation of the Amide and C-Terminal Residues in Insulin by Reduction of the Ester with Lithium Borohydride. Ciba Found. Symp. “The Chemical Structure of Proteins” p. 70 (1953).Google Scholar
  22. 20.
    Christensen, H. N.: Attempted Successive Applications of the Edman Degradation to Insulin. Acta Chem. Scand. 6, 1555 (1952).Google Scholar
  23. 21.
    Claesson, S.: Studies on Adsorption and Adsorption Analysis with Special Reference to Homologous Series. Ark. Kemi, Mineral. Geol. 23 A, No. 1 (1946).Google Scholar
  24. 22.
    — Some Arrangements for Adsorption Analysis with Large Amounts of Substances. Ark. Kemi, Mineral. Geol. 24 A, No. 16 (1947).Google Scholar
  25. 22a.
    Close, J. E. L. Adriaens, S. Moore et E. J. Bigwood: Composition en acides aminés d’hydrolysats de farine de manioc roui, variété amère. Bull. soc. chim. biol. (Paris) 35, 985 (1953).Google Scholar
  26. 23.
    Consden, R., A. H. Gordon and A. J. P. Martin: Qualitative Analysis of Proteins: a Partition Chromatographie Method Using Paper. Biochemic. J. 38, 224 (1944).Google Scholar
  27. 24.
    Corfield, M. C. and A. Robson: The Amino Acid Composition of Salmine. Biochemie. J. 55, 517 (1953).Google Scholar
  28. 25.
    Craig, L. C., J. D. Gregory and W. Hausmann: Versatile Laboratory Concentration Device. Analyt. Chemistry 22, 1462 (19).Google Scholar
  29. 26.
    Craig, L. C., W. Hausmann, E. H. Ahrens and E. J. Harfenist: Automatic Countercurrent Distribution Apparatus. Analyt. Chemistry 23, 1236 (1951).Google Scholar
  30. 27.
    Craig, L. C., W. Hausmann and J. R. Weisiger: The Qualitative and Quantitative Amino Acid Content of Bacitracin A. J. Biol. Chem. 199, 865 (1952).Google Scholar
  31. 28.
    Crook, E. M. and S. P. Datta: A Liquid Fraction Collector. Chem. and Ind. 1951, 718.Google Scholar
  32. 29.
    Cuckow, F. W., R. J. C. Harris and F. E. Speed: A Simple Fraction-Collecting Machine for Chromatographie Analysis. J. Soc. Chem. Ind. 68, 208 (1949).Google Scholar
  33. 30.
    Davie, E. W. and H. Neurath: C-Terminal Groups of Trypsinogen, DFP-Trypsin, and Carboxypeptidase. J. Amer. Chem. Soc. 74, 6305 (1952).Google Scholar
  34. 31.
    Davie, E. W. Identification of the Peptide Split from Trypsinogen During Autocatalytic Activation. Biochim. Biophys. Acta 11, 442 (1953).Google Scholar
  35. 32.
    Dahlerup-Petersen, B.: Rate of Ring Closure in the Edman Method. Acta Chem. Scand. 7, 1013 (1953).Google Scholar
  36. 33.
    Dahlerup-Petersen, B., K. Linderström-Lang and M. Ottesen: Stepwise Degradation of Peptides. Acta Chem. Scand. 6, 1135 (1952).Google Scholar
  37. 34.
    Desnuelle, P. et A. Casal: Sur la moindre résistance à l’hydrolyse acide des liaisons peptidiques situées à côté d’une fonction hydroxyle. Biochim. Biophys. Acta 2, 64 (1948).Google Scholar
  38. 35.
    Desnuelle, P., M. Rovery et C. Fabre: Etude des restes N-terminaux dans les serumalbumines de diverses espèces (suivie d’une remarque sur la stabilité des dinitrophénylaminoacides pendant l’hydrolyse). C. R. hebd. Séances Acad. Sci. 233, 987 (1951).Google Scholar
  39. 36.
    Desnuelle, P., Sur les dérivés dinitrophénylés du chymotrypsinogène et de l’α-chymotrypsine cristallisée. C. R. hebd. Séances Acad. Sci. 233, 1496 (1951).Google Scholar
  40. 37.
    Desnuelle, P., Extrémités N-terminales de la protéine de l’α-chymotrypsine. Biochim. Biophys. Acta 9, 109 (1952).Google Scholar
  41. 38.
    Desreux, V.: L’extraction fractionnée systématique des polymères. Rec. trav. chim. Pays-Bas 68, 789 (1949).Google Scholar
  42. 39.
    Dickman, S. R. and R. O. Asplund: Effect of Xanthylation on the Recovery of DNP-Amino Acids from Protein Hydrolysates. J. Amer. Chem. Soc. 74, 5208 (1952).Google Scholar
  43. 40.
    Dimler, R. J., J. W. Van Cleve, E. M. Montgomery, L. R. Bair, F. J. Castle and J. A. Whitehead: Fraction Collector with Continuously Rotating Turntable and Improved Receiver Assemblies. Analyt. Chemistry 25, 1428 (1953).Google Scholar
  44. 41.
    Dixon, H. B. F., S. Moore, M. P. Stack-Dunne and F. G. Young: Chromatography of Adrenotropic Hormone on Ion-Exchange Columns. Nature (London) 168, 1044 (1951).Google Scholar
  45. 42.
    Dobyns, B. M. and S. R. Barry: The Isolation of Iodinated Amino Acids from Thyroid Tissue by Means of Starch Column Chromatography. J. Biol. Chem. 204, 517 (1953).Google Scholar
  46. 43.
    Dowmont, Y. P. and J. S. Fruton: Chromatography of Peptides as Applied to Transamidation Reactions. J. Biol. Chem. 197, 271 (1952).Google Scholar
  47. 44.
    Durso, D. F., E. D. Schall and R. L. Whistler: Automatic Fraction Collector for Chromatographie Separations. Analyt. Chemistry 23, 425 (1951).Google Scholar
  48. 45.
    Dustin, J. P., C. Czajkowska, S. Moore and E. J. Bigwood: A Study of the Chromatographie Determination of Amino Acids in the Presence of Large Amounts of Carbohydrate. Anal. Chim. Acta 9, 256 (1953).Google Scholar
  49. 46.
    Du Vigneaud, V., C. Ressler, J.M. Swan, C.W. Roberts, P. G. Katsoyannis and S. Gordon: The Synthesis of an Octapeptide Amide with the Hormonal Activity of Oxytocin. J. Amer. Chem. Soc. 75, 4879 (1953).Google Scholar
  50. 47.
    Edelman, J. and R.V. Martin: A Simple Automatic Fraction Collector for Preparative Chromatography. Biochemie. J. 50, xxi (1952).Google Scholar
  51. 48.
    Edman, P.: A Technique for Partition Chromatography on Starch. Acta Chem. Scand. 2, 592 (1948).Google Scholar
  52. 49.
    Edman, P.: Preparation of Phenyl Thiohydantoins from Some Natural Amino Acids. Acta Chem. Scand. 4, 277 (1950).Google Scholar
  53. 50.
    Edman, P.: Method for Determination of the Amino Acid Sequence in Peptides. Acta Chem. Scand. 4, 283 (1950).Google Scholar
  54. 57.
    Edman, P.: Note on the Stepwise Degradation of Peptides via Phenyl Thiohydantoins. Acta Chem. Scand. 7, 700 (1953).Google Scholar
  55. 52.
    Edward, J. T. and S. Nielsen: Chromatography of Thiohydantoins on Paper. Determination of the C-Terminal Amino Acid of Bovine Plasma Albumin. Chem. and Ind. 1953, 197.Google Scholar
  56. 53.
    Elsden, S. R. and R. L. M. Synge: Starch as a Medium for Partition Chromatography. Biochemie. J. 38, ix (1944).Google Scholar
  57. 53a.
    Evans, G. G. and W. S. Reith: Studies on the Determination of the Sequence of Amino Acids in Peptides and Proteins. 3. The Synthesis of 3-(4′-Dimethylamino-3′:5′-dinitrophenyl) hydantoin Derivatives of Various Amino Acids, and their Use for the Determination of N-terminal Amino Acids. Biochemie. J. 56, 111 (1954).Google Scholar
  58. 54.
    Felix, K., H. Fischer, A. Krekels und H. M. Rauen: Über Clupein. IX. Mitt. Z. physiol. Chem. (Hoppe-Seyler) 286, 67 (1950).Google Scholar
  59. 55.
    Fitch, F. T. and D. S. Russell: Determination of Lanthanum in Rare Earth Mixtures. Analyt. Chemistry 23, 1469 (1951).Google Scholar
  60. 55a.
    Fletcher, C. M., A. G. Lowther and W. S. Reith: Studies on the Determination of the Sequence of Amino Acids in Peptides and Proteins. 2. The Separation of the Methyl Esters of N-2:4-Dinitrophenyl Derivatives of Amino Acids by Adsorption Chromatography and the Free Amino Groups of Insulin. Biochemie. J. 56, 106 (1954).Google Scholar
  61. 56.
    Flowers, H. M. and W. S. Reith: Studies of the Determination of the Sequence of Amino Acids in Peptides and Proteins. I. The Preparation, Properties, and Chromatographic Adsorption of the Azobenzene-p-sulphonyl Derivatives of Various Amino Acids. Biochemie. J. 53, 657 (1953).Google Scholar
  62. 57.
    Fox, S.W.: Terminal Amino Acids in Peptides and Proteins. Adv. Protein Chem. 2, 155 (1945).Google Scholar
  63. 58.
    Fox, S. W., T. L. Hurst and K. F. Itschner: A Microbiological Method for the Determination of Sequences of Amino Acid Residues. J. Amer. Chem. Soc. 73, 3573 (1951).Google Scholar
  64. 59.
    Fraenkel-Conrat, H. and J. Fraenkel-Conrat: A Method for Determination of the Amino Acid Sequence of Proteins. Acta Chem. Scand. 5, 1409 (1951).Google Scholar
  65. 60.
    Fraenkel-Conrat, H. and R. R. Porter: The Terminal Amino Groups of Conalbumin, Ovomucoid, and Avidin. Biochim. Biophys. Acta 9, 557 (1952).Google Scholar
  66. 61.
    Frantz, I. D., Jr., H. Feigelman, A. S. Werner and M. P. Smythe: Biosynthesis of Seventeen Amino Acids Labelled with C14. J. Biol. Chem. 195, 423 (1952).Google Scholar
  67. 62.
    Fraser, D. and E. A. Jerrel: The Amino Acid Composition of T3 Bacteriophage. J. Biol. Chem. 205, 291 (1953).Google Scholar
  68. 63.
    Fromageot, C. and M. Jutisz: Identification of C-End Groups in Proteins by Reduction with Lithium Aluminium Hydride. Ciba Found. Symp. “The Chemical Structure of Proteins” p. 82 (1953).Google Scholar
  69. 64.
    Fromageot, C., M. Jutisz, D. Meyer et L. Penasse: Méthode pour la caractérisation des groupes carboxyliques terminaux dans les protéines. Application à l’insuline. Biochim. Biophys. Acta 6, 283 (1950).Google Scholar
  70. 65.
    Gilson, A. R.: An Automatic Constant Volume Fraction Collector for Chromatography. Chem. and Ind. 1951, 185.Google Scholar
  71. 66.
    Gladner, J. A. and H. Neurath: C-Terminal Groups in Chymotrypsinogen and DFP-α-Chymotrypsin in Relation to the Activation Process. Biochim. Biophys. Acta 9, 335 (1952).Google Scholar
  72. 67.
    Carboxyl Terminal Groups of Proteolytic Enzymes. I. The Activation of Chymotrypsinogen to α-Chymotrypsin. J. Biol. Chem. 205, 345 (1953).Google Scholar
  73. 68.
    Glanzmann, R. und R. Signer: Der Aminosäurebestand von Scidenfibroin und von Scidenfibroinfraktionen. Makromolek. Chem. 8, 134 (1952).Google Scholar
  74. 69.
    Gordon, A. H., A. J. P. Martin and R. L. M. Synge: Partition Chromatography in the Study of Protein Constituents. Biochemie. J. 37, 79 (1943).Google Scholar
  75. 70.
    Grant, R. A. and S. R. Stitch: A Volume Actuated Fraction Collector for Use in Chromatography. Chem. and Ind. 1951, 230.Google Scholar
  76. 71.
    Grassmann, W., H. Dycherhoff und H. Eibeler: Über die enzymatische Spaltung des Glutathions. I. Z. physiol. Chem. (Hoppe-Seyler) 189, 112 (1930).Google Scholar
  77. 72.
    Grassmann, W. und H. Hörmann: Endgruppenbestimmung an Kollagen und Gelatine. Z. physiol. Chem. (Hoppe-Seyler) 292, 24 (1953).Google Scholar
  78. 73.
    Green, F. C. and L.M. Kay: Separation of Sixteen Dinitrophenylamino Acids by Adsorption Chromatography on Silicic Acid-Celite. Analyt. Chemistry 24, 726 (1952).Google Scholar
  79. 74.
    Green, F. C. and W. A. Schroeder: A Terminal Amino Acid Residue of Lysozyme as Determined with 2,4-Dinitrofluorobenzene. J. Amer. Chem. Soc. 73. 1385 (1951).Google Scholar
  80. 75.
    Green, N. M. and E. Work: Pancreatic Trypsin Inhibitor. Biochemic. J. 49, xxxvii (1951).Google Scholar
  81. 76.
    Hagdahl, L.: Some Technical Improvements in Adsorption Analysis. Acta Chem. Scand. 2, 574 (1948).Google Scholar
  82. 76a.
    Harfenist, E. J.: The Amino Acid Composition of Insulins Isolated from Beef, Pork, and Sheep Glands. J. Amer. Chem. Soc. 75, 5528 (1953).Google Scholar
  83. 77.
    Harfenist, E. J. and L.C. Craig: Differences in the Quantitative Amino Acid Composition of Insulins Isolated from Beef, Pork and Sheep Glands. J. Amer. Chem. Soc. 74, 4216 (1952).Google Scholar
  84. 78.
    Harris, J. I.: The Use of Carboxypeptidase for the Identification of Terminal Carboxyl Groups in Polypeptides and Proteins. Asparagine as a C-Terminal Residue in Insulin. J. Amer. Chem. Soc. 74, 2944 (1952).Google Scholar
  85. 79.
    Harris, J. I. and C. A. Knight: Action of Carboxypeptidase on Tobacco Mosaic Virus. Nature (London) 170, 613 (1952).Google Scholar
  86. 80.
    Harris, J. O.: Automatic Chromatogram Fraction Cutter. Chem. and Ind. 1951, 255.Google Scholar
  87. 81.
    Hausmann, W.: Amino Acid Composition of Crystalline Inorganic Pyrophosphatase Isolated from Bakers Yeast. J. Amer. Chem. Soc. 74, 3181 (1952).Google Scholar
  88. 82.
    Hausmann, W. and L.C. Craig: Polypeptin: Purification, Molecular Weight Determination, and Amino Acid Composition. J. Biol. Chem. 198, 405 (1952).Google Scholar
  89. 83.
    Hickson, J. L. and R. L. Whistler: Automatic Fraction Collector for Chromatographic Preparations. Analyt. Chemistry 25, 1425 (1953).Google Scholar
  90. 84.
    Hirs, C. H.W.: A Chromatographie Investigation of Chymotrypsinogen α. J. Biol. Chem. 205, 93 (1953).Google Scholar
  91. 85.
    Hirs, C. H. W., S. Moore and W. H. Stein: Isolation of Amino Acids by Chromatography on Ion Exchange Columns; Use of Volatile Buffers. J. Biol. Chem. 195, 669 (1952).Google Scholar
  92. 86.
    Hirs, C. H. W., A Chromatographie Investigation of Pancreatic Ribonuclease. J. Biol. Chem. 200, 493 (1953).Google Scholar
  93. 87.
    Holley, R. W. and A. D. Holley: A New Stepwise Degradation of Peptides. J. Amer. Chem. Soc. 74, 5445 (1952).Google Scholar
  94. 88.
    Hough, L., J. K. N. Jones and W. H. Wadman: Quantitative Analysis of Mixtures of Sugars by the Method of Partition Chromatography. IV. Separation of the Sugars and their Methylated Derivatives on Columns of Powdered Cellulose. J. Chem. Soc. (London) 1949, 2511.Google Scholar
  95. 89.
    James, A. T., A. J. P. Martin and S. S. Randall: Automatic Fraction Collectors and a Conductivity Recorder. Biochemie. J. 49, 293 (1951).Google Scholar
  96. 90.
    Jollès, P. et C. Fromageot: Caractérisation du résidu β-aspartique dans l’insuline. Biochmi. Biophys. Acta 9, 416 (1952).Google Scholar
  97. 91.
    Jutisz, M. and E. Lederer: Quantitative Chromatographie Separation of Synthetic Peptides. Nature (London) 159, 445 (1947).Google Scholar
  98. 92.
    Jutisz, M. et L. Pénasse: Détermination de la lysine N-terminale et totale du lysozyme. Bull. soc. chim. biol. (Paris) 34, 480 (1952).Google Scholar
  99. 93.
    Knessl, O., B. Keil, A. Maly and F. Šorm: On Proteins and Amino Acids. V. Partition Chromatography of DNP-Amino Acids on Kieselguhr and Siliconated Materials. Collect. Czechoslov. Chem. Communs. 15, 918 (19).Google Scholar
  100. 94.
    Krol, S.: The Quantitative Estimation of Glycine in Small Samples of Proteins. Biochemie. J. 52, 227 (1952).Google Scholar
  101. 95.
    Kroner, T. D., W. Tabroff and J. J. McGarr: Peptides Isolated from a Partial Hydrolysate of Steer Hide Collagen. J. Amer. Chem. Soc. 75, 4084 (1953).Google Scholar
  102. 96.
    Landmann, W. A., M. P. Drake and J. Dillaha: Paper Chromatography of the 3-Phenyl-2-thiohydantoin Derivatives of Amino Acids with Application to End Group and Sequence Studies. J. Amer. Chem. Soc. 75, 3638 (1953).Google Scholar
  103. 96a.
    Landmann, W. A., M. P. Drake, and W. F. White: Studies on Pituitary Adrenocorticotropin. VI. An N-Terminal Sequence of Corticotropin-A. J. Amer. Chem. Soc. 75, 4370 (1953).Google Scholar
  104. 97.
    Lederer, E. et T. P. Kiun: Séparations chromatographiques d’acides aminés et de peptides. I. Chromatographie de peptides neutres dans le formol à 10%. Biochim. Biophys. Acta 1, 35 (1947).Google Scholar
  105. 98.
    Lens, J.: The Terminal Carboxyl Groups of Insulin. Biochim. Biophys. Acta 3, 367 (1949).Google Scholar
  106. 99.
    Lens, J. and A. Evertzen: The Difference Between Insulin from Cattle and from Pigs. Biochim. Biophys. Acta 8, 332 (1952).Google Scholar
  107. 100.
    Lewis, J. C., N. S. Snell, D.J. Hirschmann and H. Fraenkel-Conrat: Amino Acid Composition of Egg Proteins. J. Biol. Chem. 186, 23 (1950).Google Scholar
  108. 101.
    Li, C. H. and L. Ash: The N-Terminal End Groups of Hypophyseal Growth Hormone (Somatotropin). J. Biol. Chem. 203, 419 (1953).Google Scholar
  109. 102.
    Li, C. H., A. Tiselius, K. O. Pedersen, L. Hagdahl and H. Carstensen: Chromatography of Adrenocorticotropic Peptides. J. Biol. Chem. 190, 317 (1951).Google Scholar
  110. 103.
    Lien, O. G., Jr. and D. M. Greenberg: Chromatographic Studies on the Interconversion of Amino Acids. J. Biol. Chem. 195, 637 (1952).Google Scholar
  111. 104.
    Lien, O. G., Jr., E. A. Petersen and D. M. Greenberg: Automatic Fraction Collector for Column Chromatography. Analyt. Chemistry 24, 920 (1952).Google Scholar
  112. 105.
    Lorand, L. and W. R. Middlebrook: The Action of Thrombin on Fibrinogen. Biochemic. J. 52, 196 (1952).Google Scholar
  113. 106.
    Lorand, L. Studies on Fibrino-Peptide. Biochim. Biophys. Acta 9, 581 (1952).Google Scholar
  114. 107.
    Lorand, L. Species Specificity of Fibrinogen as Revealed by End-Group Studies. Science (New York) 118, 515 (1953).Google Scholar
  115. 108.
    Lowther, A. G.: Identification of N-(2,4-Dinitrophenyl) Amino Acids. Nature (London) 167, 767 (1951).Google Scholar
  116. 109.
    Mader, C. and G. Mader: Automatic Volume Fraction Collector. Analyt. Chemistry 25, 1423 (1953).Google Scholar
  117. 110.
    Mader, C. Evaporation Error in Volume Fractionation Chromatography. Analyt Chemistry 25, 1556 (1953).Google Scholar
  118. 111.
    Marsh, D. F. and C. B. Scibert: A Simple Electronic Electrolytic Drop Recorder. Science (New York) 108, 363 (1948).Google Scholar
  119. 112.
    Martin, A. J. P. and R. R. Porter: Chromatographie Fractionation of Ribonuclease. Biochemie. J. 49, 215 (1951).Google Scholar
  120. 113.
    Martin, A. J. P. and R. L. M. Synge: A New Form of Chromatogram Employing Two Liquid Phases. 1. A Theory of Chromatography. 2. Application to the Micro-Determination of the Higher Monoamino Acids in Proteins. Biochemie. J. 35, 1358 (1941).Google Scholar
  121. 114.
    Martin, A. J. P. Analytical Chemistry of the Proteins. Adv. Protein Chem. 2, 1 (1945).Google Scholar
  122. 115.
    McClure, L. E., L. Schieler and M. S. Dunn: The Free Amino Groups of Crystalline Bovine Plasma Albumin. J. Amer. Chem. Soc. 75, 1980 (1953).Google Scholar
  123. 116.
    McFadden, M. L. and E. L. Smith: The Free Amino Groups of γ-Globulins of Different Species. J. Amer. Chem. Soc. 75, 2784 (1953).Google Scholar
  124. 117.
    Mellon, E. F., A. H. Korn and S. R. Hoover: The Terminal Amino Groups of α-and β-CaScins. J. Amer. Chem. Soc. 75, 1675 (1953).Google Scholar
  125. 118.
    Mendenhall, R. M.: A Quantitative Amino Acid Analysis of Sheep Adrenocorticotropic (ACTH) Protein. Science (New York) 117, 713 (1953).Google Scholar
  126. 119.
    Middlebrook, W. R.: Identification of the End Amino Groups of Wool by Means of their 2,4-Dinitrophenyl Derivatives. Nature (London) 164, 501 (1949).Google Scholar
  127. 120.
    Middlebrook, W. R.: The Chain Weight of Wool Keratin. Biochim. Biophys. Acta 7, 547 (1951).Google Scholar
  128. 121.
    Mills, G. L.: Identification of Dinitrophenylamino Acids. Nature (London) 165, 403 (1950).Google Scholar
  129. 122.
    Mills, G. L.: Observations on the Application of Fluorodinitrobenzene to the Quantitative Analysis of Proteins. Biochemic. J. 50, 707 (1952).Google Scholar
  130. 123.
    Monier, R., Y. Gendron, M. Jutisz et C. Fromageot: Nouvelle détermination des acides aminés basiques du lysozyme. Biochim. Biophys. Acta 8, 588 (1952).Google Scholar
  131. 124.
    Moore, S. and W. H. Stein: Photometric Ninhydrin Method for Use in the Chromatography of Amino Acids. J. Biol. Chem. 176, 367 (1948).Google Scholar
  132. 125.
    Moore, S. Chromatography of Amino Acids on Starch Columns. Solvent Mixtures for the Fractionation of Protein Hydrolysates. J. Biol. Chem. 178, 53 (1949).Google Scholar
  133. 126.
    Moore, S. Chromatography of Amino Acids on Sulfonated Polystyrene Resins. J. Biol. Chem. 192, 663 (1951).Google Scholar
  134. 127.
    Nye W. Simple Automatic Pipet. Analyt. Chemistry 22 848 1950Google Scholar
  135. 127a.
    Ohno, K.: On the Structure of Lysozyme. I. Quantitative Estimation of Carboxyl-terminal Amino Acid by Improved Hydrazinolysis Method. J. Biochem. (Japan) 40, 621 (1953).Google Scholar
  136. 128.
    Ottesen, M. and C. Villee: The Peptides Released in the Enzymatic Transformation of Ovalbumin to Plakalbumin. C. R. Trav. Lab. Carlsberg, Sér. chim. 27, 421 (1951).Google Scholar
  137. 129.
    Ottesen, M. and A. Wollenberger: Stepwise Degradation of the Peptides Liberated in the Transformation of Ovalbumin to Plakalbumin. Nature (London) 170, 801 (19).Google Scholar
  138. 129a.
    Ottesen, M. Stepwise Degradation of the Peptides Liberated in the Transformation of Ovalbumin to Plakalbumin. C. R. Trav. Lab. Carlsberg, Sér chim. 28, 463 (1953).Google Scholar
  139. 130.
    Paleus, S. and J. B. Neilands: Preparation of Cytochrone c with the Aid of Ion Exchange Resin. Acta Chem. Scand. 4, 1024 (1950).Google Scholar
  140. 131.
    Partridge, S. M. and R. C. Brimley: Displacement Chromatography on Synthetic Ion-Exchange Resins. 8. A Systematic Method for the Separation of Amino Acids. Biochemie. J. 51, 628 (1952).Google Scholar
  141. 132.
    Partridge, S. M. and T. Swain: A Reversed-Phase Partition Chromatogram Using Chlorinated Rubber. Nature (London) 166, 272 (1950).Google Scholar
  142. 133.
    Partridge, S. M., R. G. Westall and J. R. Bendall: Improvements in or Relating to the Fractionation of the Components of a Mixture in Solution. Brit. Patent 644,382 (1950).Google Scholar
  143. 134.
    Pénasse, L., M. Jutisz, C. Fromageot et H. Fraenkel-Conrat: La détermination des groupes carboxyliques des protéines. II. Le groupe carboxylique terminal de l’ovomucoïde. Biochim. Biophys. Acta 9, 551 (1952).Google Scholar
  144. 135.
    Perrone, J.C: Separation of Amino Acids as Dinitrophenyl Derivatives. Nature (London) 167, 513 (1951).Google Scholar
  145. 136.
    Phillips, D. M. P.: A Simple Automatic Fraction-Cutter for Liquid Columns. Nature (London) 164, 545 (1949).Google Scholar
  146. 137.
    Pierce, J. G. and V. du Vigneaud: Preliminary Studies on the Amino Acid Content of a High Potency Preparation of the Oxytocic Hormone of the Posterior Lobe of the Pituitary Gland. J. Biol. Chem. 182, 359 (1950).Google Scholar
  147. 138.
    Pierce, J. G. Studies of High Potency Oxytocic Material from Beef Posterior Pituitary Lobes. J. Biol. Chem. 186, 77 (1950).Google Scholar
  148. 139.
    Piez, K. A., E. B. Tooper and L. S. Fosdick: Desalting of Amino Acid Solutions by Ion Exchange. J. Biol. Chem. 194, 669 (1952).Google Scholar
  149. 140.
    Polis, B. D. and H. W. Shmukler: Crystalline Lactoperoxidase. I. Isolation by Displacement Chromatography. II. Physicochemical and Enzymatic Properties. J. Biol. Chem. 201, 475 (1953).Google Scholar
  150. 141.
    Porath, J.: Purification of Bacitracin and Some Properties of Purified Bacitracin. Acta Chem. Scand. 6, 1237 (1952).Google Scholar
  151. 142.
    Porath, J.: Structure of Bacitracin A. Nature (London) 172, 871 (1953).Google Scholar
  152. 143.
    Porter, R. R.: The Unreactive Amino Groups of Proteins. Biochim. Biophys. Acta 2, 105 (1948).Google Scholar
  153. 144.
    Porter, R. R.: Reactivity of the Iminazole Ring in Proteins. Biochemic. J. 46, 304 (1950).Google Scholar
  154. 145.
    Porter, R. R.: A Chemical Study of Rabbit Antiovalbumin. Biochemic. J. 46, 473 (1950).Google Scholar
  155. 146.
    Porter, R. R.: Use of 1,2,4-Fluorodinitrobenzene in Studies of Protein Structure. Methods Med. Res. 3, 256 (1950).Google Scholar
  156. 147.
    Porter, R. R.: Partition Chromatography of Insulin and Other Proteins. Biochemic. J. 53, 320 (1953).Google Scholar
  157. 148.
    Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobins. Biochemie. J. 42, 287 (1948).Google Scholar
  158. 149.
    Putnam, F. W.: N-Terminal Groups of Normal Human γ-Globulin and of Myeloma Proteins. J. Amer. Chem. Soc. 75, 2785 (1953).Google Scholar
  159. 150.
    Reith, W. S. and N.M. Waldron: On the Determination of the Sequence of Amino Acids in Peptides. Biochemie. J. 53, xxxv (1953).Google Scholar
  160. 150a.
    Reith, W. S. Studies on the Determination of the Sequence of Amino Acids in Peptides and Proteins. 4._The Synthesis of 3-(4′-Dimethylamino-3′: 5′-dinitrophenyl)-2-thiohydantoin Derivatives of Various Amino Acids, and their Use for Amino Acid-Sequence Determinations. Biochemie. J. 56, 116 (1954).Google Scholar
  161. 151.
    Rovery, M., C. Fabre et P. Desnuelle: Etude des extrémités N-terminales du trypsinogène et de la trypsine de Boeuf. Biochim. Biophys. Acta 9, 702 (1952).Google Scholar
  162. 152.
    Rovery, M., Extrémités N-terminales de la β- et de la β-chymotrypsines de Boeuf. Biochim. Biophys. Acta 10, 481 (1953).Google Scholar
  163. 153.
    Sanger, F.: The Free Amino Groups of Insulin. Biochemie. J. 39, 507 (1945).Google Scholar
  164. 154.
    Sanger, F.: The Free Amino Group in Gramicidin S. Biochemie. J. 40, 261 (1946).Google Scholar
  165. 155.
    Sanger, F.: The Terminal Peptides of Insulin. Biochemic. J. 45, 563 (1949).Google Scholar
  166. 156.
    Sanger, F.: Application of Partition Chromatography to the Study of Protein Structure. Biochem. Soc. Symp. 3, 21 (1949).Google Scholar
  167. 157.
    Sanger, F.: Species Differences in Insulins. Nature (London) 164, 529 (1949).Google Scholar
  168. 158.
    Sanger, F.: The Arrangement of Amino Acids in Proteins. Adv. Protein Chem. 7, 1 (1952).Google Scholar
  169. 159.
    Sanger, F. and E. O. P. Thompson: The Amino-acid Sequence in the Glycyl Chain of Insulin. 1. The Identification of Lower Peptides from Partial Hydrolysates. Biochemie. J. 53, 353 (1953).Google Scholar
  170. 160.
    Sanger, F. The Amino-acid Sequence in the Glycyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochemie. J. 53, 366 (1953).Google Scholar
  171. 161.
    Sanger, F. and H. Tuppy: The Amino-acid Sequence in the Phenylalanyl Chain of Insulin. 1. The Identification of Lower Peptides from Partial Hydrolysates. Biochemie. J. 49, 463 (1951).Google Scholar
  172. 162.
    Sanger, F. The Amino-acid Sequence in the Phenylalanyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochemie. J. 49, 481 (1951).Google Scholar
  173. 163.
    Schlack, P. und W. Kumpf: Über eine neue Methode zur Ermittlung der Konstitution von Peptiden. Z. physiol. Chem. (Hoppe-Seyler) 154, 125 (1926).Google Scholar
  174. 164.
    Schlögl, K., A. Siegel und F. Wessely: Konstitutionsermittlung von Peptiden. IV. Papierchromatographische Trennung und Identifizierung der Abbaustufen. Z. physiol. Chem. (Hoppe-Seyler) 291, 265 (1952).Google Scholar
  175. 165.
    Schmid, K.: Untersuchungen über das Wal-myoglobin. Helv. Chim. Acta 32, 105 (1949).Google Scholar
  176. 166.
    Schram, E. and E. J. Bigwood: Fraction Collector for Chromatography. Analyt. Chemistry 25, 1424 (1953).Google Scholar
  177. 167.
    Schram, E., J. P. Dustin, S. Moore et E. J. Bigwood: Application de 1a Chromatographie sur échangeur d’ions à l’étude de la composition des aliments en acides aminés. Anal. Chim. Acta 9, 149 (1953).Google Scholar
  178. 168.
    Schroeder, W. A.: Sequence of Four Amino Acids at the Amino End of the Single Polypeptide Chain of Lysozyme. J. Amer. Chem. Soc. 74, 5118 (1952).Google Scholar
  179. 169.
    — unpublished results.Google Scholar
  180. 170.
    Schroeder, W. A. and R. B. Corey: Automatic Weight-driven Time-controlled Fraction Collector. Analyt. Chemistry 23, 1723 (1951).Google Scholar
  181. 171.
    Schroeder, W. A. and L. R. Honnen: Correlation Between the Structure of Some Dinitrophenylpeptides and their Chromatographic Behavior on Silicic Acid-Celite. J. Amer. Chem. Soc. 75, 4615 (1953).Google Scholar
  182. 172.
    Schroeder, W. A., L. R. Honnen and F. C. Green: Chromatographic Separation and Identification of Some Peptides in Partial Hydrolysates of Gelatin. Proc. Nat. Acad. Sci. (U. S.A.) 39, 23 (1953).Google Scholar
  183. 173.
    Schroeder, W. A. and L. M. Kay: unpublished results.Google Scholar
  184. 174.
    Schroeder, W. A., L. M. Kay, J. LeGette, L. R. Honnen and F. C. Green: The Constitution of Gelatin. J. Amer. Chem. Soc. (in press).Google Scholar
  185. 175.
    Schroeder, W. A., L. M. Kay and I. C. Wells: Amino Acid Composition of Hemoglobins of Normal Negroes and Sickle-cell Anemies. J. Biol. Chem. 187, 221 (1950).Google Scholar
  186. 176.
    Schroeder, W. A. and J. LeGette: A Study of the Quantitative Dinitro-phenylation of Amino Acids and Peptides. J. Amer. Chem. Soc. 75, 4612 (1953).Google Scholar
  187. 177.
    Shepard, C. C. and A. Tiselius: The Chromatography of Proteins. The Effect of Salt Concentration and PH on the Adsorption of Proteins to Silica Gel. Discuss. Faraday Soc. 7, 275 (1949).Google Scholar
  188. 178.
    Shulgin, A. T., O. G. Lien, Jr., E. M. Gal and D. M. Greenberg: Synthesis and Chromatographie Separation of Isotopically Labelled DL-Threonine and DL-Allothreonine. J. Amer. Chem. Soc. 74, 2427 (1952).Google Scholar
  189. 179.
    Simmonds, D. H.: Leucine-Isoleucine Content of Wool. Nature (London) 172, 677 (1953).Google Scholar
  190. 180.
    Sjöquist, J.: Paper Strip Identification of the Phenyl Thiohydantoins. Acta Chem. Scand. 7, 447 (1953).Google Scholar
  191. 181.
    Smith, E. L.: Proteolytic Enzymes. In: The Enzymes, Vol. 1, Part 2, p. 802 New York: Academic Press. 1951.Google Scholar
  192. 182.
    Smith, E. L. and A. Stockell: J. Biol. Chem. (in press).Google Scholar
  193. 183.
    Smith, E. L., A. Stockell and J. R. Kimmel: J. Biol. Chem. (in press).Google Scholar
  194. 184.
    Sober, H. A., G. Kegeles and F. J. Gutter: Chromatographie Analysis of Mixture of Proteins from Egg White. Science (New York) 110, 564 (1949).Google Scholar
  195. 185.
    Sober, H. A., Chromatography of Proteins. Frontal Analysis on a Cation Exchange Resin. J. Amer. Chem. Soc. 74, 2734 (1952).Google Scholar
  196. 186.
    Šorm, F. and Z. Sormova: On Proteins and Amino Acids. VII. On Clupein. Collect. Czechoslov. Chem. Communs. 16, 207 (1951).Google Scholar
  197. 186a.
    Soupart, P., S. Moore and E. J. Bigwood: Amino Acid Composition of Human Milk. J. Biol. Chem. 206, 699 (1954).Google Scholar
  198. 187.
    Stein, W. H.: Excretion of Amino Acids in Cystinuria. Proc. Soc. exp. Biol. Med. 78, 705 (1951).Google Scholar
  199. 188.
    Stein, W. H.: A Chromatographie Investigation of the Amino Acid Constituents of Normal Urine. J. Biol. Chem. 201, 45 (1953).Google Scholar
  200. 189.
    Stein, W. H. and S. Moore: Chromatography of Amino Acids on Starch Columns. Separation of Phenylalanine, Leucine, Isoleucine, Methionine, Tyrosine, and Valine. J. Biol. Chem. 176, 337 (1948).Google Scholar
  201. 190.
    Stein, W. H. Chromatographic Determination of the Amino Acid Composition of Proteins. Cold Spring Harbor Sympos. Quant. Biol. 14, 179 (1949).Google Scholar
  202. 191.
    Stein, W. H. Amino Acid Composition of β-Lactoglobulin and Bovine Serum Albumin. J. Biol. Chem. 178, 79 (1949).Google Scholar
  203. 192.
    Stein, W. H. Electrolytic Desalting of Amino Acids. Conversion of Arginine to Ornithine. J. Biol. Chem. 190, 103 (1951).Google Scholar
  204. 193.
    Steinberg, D.: The Action of Carboxypeptidase on Ovalbumin. J. Amer. Chem. Soc. 74, 4217 (1952).Google Scholar
  205. 194.
    Steinberg, D.: The Combined Action of Carboxypeptidase and B. subtilis Enzyme on Ovalbumin. J. Amer. Chem. Soc. 75, 4875 (1953).Google Scholar
  206. 195.
    Swingle, S. M. and A. Tiselius: Tricalcium Phosphate as an Adsorbent in the Chromatography of Proteins. Biochemie. J. 48, 171 (1951).Google Scholar
  207. 196.
    Synge, R. L. M.: Partial Hydrolysis Products Derived from Proteins and their Significance for Protein Structure. Chem. Rev. 32, 135 (1943).Google Scholar
  208. 197.
    Synge, R. L. M.: Analysis of a Partial Hydrolysate of Gramicidin by Partition Chromatography with Starch. Biochemie. J. 38, 285 (1944).Google Scholar
  209. 198.
    Tallan, H. H.: Occurrence of a New Amino Acid, 3-Methylhistidine, in Human Urine. Federat. Proc. (Amer. Soc. exp. Biol.) 12, 278 (1953).Google Scholar
  210. 199.
    Tallan, H. H. and W. H. Stein: Chromatographie Studies on Lysozyme. J. Biol. Chem. 200, 507 (1953).Google Scholar
  211. 199a.
    Tallan, H. H., W. H. Stein and S. Moore: 3-Methylhistidine, a New Amino Acid from Human Urine. J. Biol. Chem. 206, 825 (1954).Google Scholar
  212. 200.
    Thompson, A. R.: Destruction of DNP-Amino Acids by Tryptophane. Nature (London) 168, 390 (1951).Google Scholar
  213. 201.
    Thompson, A. R.: The C-Terminal Residue of Lysozyme. Nature (London) 169, 495 (1952).Google Scholar
  214. 202.
    — private communication.Google Scholar
  215. 203.
    Thompson, E. O. P.: The N-Terminal Sequence of Carboxypeptidase. Biochim Biophys. Acta 10, 633 (1953).Google Scholar
  216. 204.
    — private communication.Google Scholar
  217. 205.
    Tiselius, A.: Displacement Development in Adsorption Analysis. Ark. Kemi, Mineral. Geol. 16 A, No. 18 (1943).Google Scholar
  218. 206.
    Tristram, G. R.: Observations Upon the Application of Partition Chromatography to the Determination of the Monoamino Acids in Proteins. Biochemie. J. 40, 721 (1946).Google Scholar
  219. 207.
    Trueblood, K. N. and E. Malmberg: An Experimental Study of Chromatography on Silicic Acid-Celite. The Applicability of the Theory of Chromatography. J. Amer. Chem. Soc. 72, 4112 (1950).Google Scholar
  220. 208.
    Turner, R. A. and G. Schmerzler: C-Terminal Residues of Ovomucoid and Ovalbumin. Biochim. Biophys. Acta 11, 586 (1953).Google Scholar
  221. 209.
    Van Vunakis, H.: The Free Amino Groups of Serum Albumins. Univ. Microfilms (Ann Arbor, Mich.) No. 2865 [Chem. Abstr. 46, 2112 (1952).Google Scholar
  222. 210.
    Varner, J. E. and W. A. Bulen: Automatic Constant-Volume Fraction Collector. J. Chem. Education 29, 625 (1952).Google Scholar
  223. 211.
    Waley, S. G. and J. Watson: The Stepwise Degradation of Peptides. J. Chem. Soc. (London) 1951, 2394.Google Scholar
  224. 212.
    Wessely, F., K. Schlögl and G. Korger: A New Method for the Degradation of Peptides. Nature (London) 169, 708 (1952).Google Scholar
  225. 213.
    Westall, R. G.: Isolation of γ-Amino Butyric Acid from Beet-root. Nature (London) 165, 717 (1950).Google Scholar
  226. 214.
    Weygand, F. und R. Junk: Die freien Aminogruppen des „alten” gelben Fermentes. Naturwiss. 38, 433 (1951).Google Scholar
  227. 215.
    White, W. F.: Studies on Pituitary Adrenocroticotropin. VII. A C-Terminal Sequence of Corticotropin-A. J. Amer. Chem. Soc. 75, 4877 (1953).Google Scholar
  228. 215a.
    White, W. F. and W. L. Fierce: Studies on Pituitary Adrenocorticotropin. III. Differentiation of Three Active Types on XE-97 Resin. J. Amer. Chem. Soc. 75, 245 (1953).Google Scholar
  229. 216.
    Williamson, M. B. and J. M. Passmann: The Terminal Group of Pepsin. J. Biol. Chem. 199, 121 (1952).Google Scholar
  230. 217.
    Wingo, W. J. and I. Browning: Simple and Inexpensive Fraction Collector. Analyt. Chemistry 25, 1426 (1953).Google Scholar
  231. 218.
    Zechmeister, L. and M. Rohdewald: Some Aspects of Enzyme Chromatography. Fortschr. Chem. organ. Naturstoffe 8, 341 (1951).Google Scholar

Copyright information

© Wien · Springer - Verlag 1954

Authors and Affiliations

  • W. A. Schroeder
    • 1
  1. 1.PasadenaUSA

Personalised recommendations