Advertisement

Abstract

The properties of proteins are determined not only by the sequence of amino-acid residues in the polypeptide chains, but also by the configuration of the chains—the way in which the chains are coiled or folded. It is probable that denaturation, the loss of some of the specific properties of a native protein, may in many cases be the result simply of a change in configuration of the polypeptide chains, without any change whatever in the sequence of amino-acid residues.

Keywords

Polypeptide Chain Amide Group Silk Fibroin Globular Protein Fiber Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, G. and R. B. Corey: The Crystal Structure of Glycine. J. Amer. Chem. Soc. 61, 1087 (1939).CrossRefGoogle Scholar
  2. 2.
    Ambrose, E. J. and A. Elliott: The Structure of Synthetic Polypeptides. II. Investigation with Polarized Infra-red Spectroscopy. Proc. Roy. Soc. (London), Ser. A 205, 47 (1951).CrossRefGoogle Scholar
  3. 3.
    Ambrose, E. J. and W. E. Hanby: Evidence of Chain Folding in a Synthetic Polypeptide and in Keratin. Nature (London) 163, 483 (1949).CrossRefGoogle Scholar
  4. 4.
    Arndt, U. W. and D. P. Riley: Intra-helix S—S Linked Structures for Insulin. Nature (London) 172, 245 (1953).CrossRefGoogle Scholar
  5. 5.
    Astbury, W. T. (leader of the discussion): A Discussion on the Structure of Proteins. Proc. Roy. Soc. (London), Ser. B 141, 1 (1953).CrossRefGoogle Scholar
  6. 6.
    Astbury, W. T. and A. Street: X-ray Studies of the Structure of Hair, Wool, and Related Fibres. I. General. Philos. Trans. Roy. Soc. (London), Ser. A 230, 75 (1931).CrossRefGoogle Scholar
  7. 7.
    Astbury, W. T. and C. Weibull: X-ray Diffraction Study of the Structure of Bacterial Flagella. Nature (London) 163, 280 (1949).CrossRefGoogle Scholar
  8. 8.
    Astbury, W. T. and H. J. Woods: X-ray Studies of the Structure of Hair, Wool, and Related Fibres. II. The Molecular Structure and Elastic Properties of Hair Keratin. Philos. Trans. Roy. Soc. (London), Ser. A 232, 333 (1933).CrossRefGoogle Scholar
  9. 9.
    Badger, R. M. and H. Rubalcava: The Infrared Absorption Spectra of Amides in Solution and Their Relation to the Spectra of Polypeptides. Proc. Nat. Acad. Sci. (U.S.A.) 40, 12 (1954).CrossRefGoogle Scholar
  10. 10.
    Bailey, K., W. T. Astbury and K. M. Rudall: Fibrinogen and Fibrin as Members of the Keratin-Myosin Group. Nature (London) 151, 716 (1943).CrossRefGoogle Scholar
  11. 11.
    Bamford, C. H., L. Brown, A. Elliott, W. E. Hanby and I. F. Trotter: Structure of Synthetic Polypeptides. Nature (London) 169, 357 (1952).CrossRefGoogle Scholar
  12. 12.
    Bamford, C. H., L. Brown, A. Elliott, W. E. Hanby and I. F. Trotter: Some New Investigations on the Structure of Synthetic Polypeptides. Proc. Roy. Soc. (London), Ser. B 141, 49 (1953).CrossRefGoogle Scholar
  13. 12a.
    Bamford, C. H., L. Brown, A. Elliott, W. E. Hanby and I. F. Trotter: Alpha-und Beta-Forms of Poly-L-Alanine. Nature (London) 173. 27 (1954).CrossRefGoogle Scholar
  14. 13.
    Bamford, C. H., W. E. Hanby and F. Happey: The Structure of Synthetic Polypeptides. I. X-ray Investigation. Proc. Roy. Soc. (London), Ser. A 205, 30 (1951).CrossRefGoogle Scholar
  15. 14.
    Bear, R. S.: Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  16. 15.
    Bernal, J. D.: The Crystal Structure of the Natural Amino Acids and Related Compounds. Z. Kristallogr., Mineral., Petrogr. 78, 363 (1931).Google Scholar
  17. 16.
    Bernal, J. D. and D. Crowfoot: X-ray Photographs of Crystalline Pepsin. Nature (London) 133, 794 (1934).CrossRefGoogle Scholar
  18. 17.
    Bijvoet, J. M., A. F. Peerdeman and A. J. van Bommel: Determination of the Absolute Configuration of Optically Active Compounds by Means of X-rays. Nature (London) 168, 271 (1951).CrossRefGoogle Scholar
  19. 18.
    Blum, J. and D. R. Davies: The Crystal Structure of Parabanic Acid (unpublished).Google Scholar
  20. 19.
    Boehm, G. und H. H. Weber: Das Röntgendiagramm von gedehnten Myosinfäden. Kolloid-Z. 61, 269 (1932).CrossRefGoogle Scholar
  21. 20.
    Boyes-Watson, J., E. Davidson and M. F. Perutz: An X-ray Study of Horse Methaemoglobin. I. Proc. Roy. Soc. (London), Ser. A 191, 83 (1947).CrossRefGoogle Scholar
  22. 21.
    Bragg, L.: X-ray Analysis of the Haemoglobin Molecule. Proc. Roy. Soc. (London), Ser. B 141, 67 (1953).CrossRefGoogle Scholar
  23. 22.
    — Application of X-ray Optics to Proteins. Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  24. 23.
    Bragg, L., J. C. Kendrew and M. F. Perutz: Polypeptide Chain Configurations in Crystalline Proteins. Proc. Roy. Soc. (London), Ser. A 203, 321 (1950).CrossRefGoogle Scholar
  25. 24.
    Bragg, L. and M. F. Perutz: The Structure of Haemoglobin. Proc. Roy. Soc. (London), Ser. A 213, 425 (1952).CrossRefGoogle Scholar
  26. 25.
    Brill, R.: Über Scidenfibroin. I. Liebigs Ann. Chem. 434, 204 (1923).CrossRefGoogle Scholar
  27. 26.
    Carpenter, G. B. and J. Donohue: The Crystal Structure of N-Acetylglycine. J. Amer. Chem. Soc. 72, 2315 (1950).CrossRefGoogle Scholar
  28. 27.
    Cochran, W., F. H. C. Crick and V. Vand: The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix. Acta Crystallogr. 5, 581 (1952).Google Scholar
  29. 28.
    Cochran, W. and B. R. Penfold: The Crystal Structure of L-Glutamine. Acta Crystallogr. 5, 644 (1952).CrossRefGoogle Scholar
  30. 29.
    Cohen, C. and R. S. Bear: Helical Polypeptide Chain Configuration in Collagen. J. Amer. Chem. Soc. 75, 2783 (1953).CrossRefGoogle Scholar
  31. 30.
    Corey, R. B.: The Crystal Structure of Diketopiperazine. J. Amer. Chem. Soc. 60, 1598 (1938).CrossRefGoogle Scholar
  32. 31.
    Corey, R. B.: X-ray Diffraction Studies of Crystalline Amino Acids and Peptides. Fortschr. Chem. organ. Naturstoffe 8, 310 (1951).Google Scholar
  33. 32.
    Corey, R. B. and J. Donohue: Interatomic Distances and Bond Angles in the Polypeptide Chain of Proteins. J. Amer. Chem. Soc. 72, 2899 (1950).CrossRefGoogle Scholar
  34. 33.
    Corey, R. B. and L. Pauling: Fundamental Dimensions of Polypeptide Chains. Proc. Roy. Soc. (London), Ser. B 141, 10 (1953).CrossRefGoogle Scholar
  35. 34.
    Crick, F. H. C: Is α-Keratin a Coiled Coil? Nature (London) 170, 882 (1952).CrossRefGoogle Scholar
  36. 35.
    Crick, F. H. C: The Height of the Vector Rods in the Three-dimensional Patterson of Haemoglobin. Acta Crystallogr. 5, 381 (1952).CrossRefGoogle Scholar
  37. 36.
    Crick, F. H. C.: The Strength of the 10-Å. Reflexions in Haemoglobin. Acta Crystallogr. 6, 600 (1953).Google Scholar
  38. 37.
    Crick, F. H. C: Fourier Transform of a Coiled Coil. Acta Crystallogr. 6, 685 (1953).CrossRefGoogle Scholar
  39. 38.
    Crick, F. H. C: The Packing of α-Helices: Simple Coiled Coils. Acta Crystallogr. 6, 689 (1953).CrossRefGoogle Scholar
  40. 39.
    Crowfoot, D., C. W. Bunn, B. W. Rogers-Low and A. Turner-Jones: The X-ray Crystallographic Investigation of the Structure of Penicillin. Chap. 11. The Chemistry of Penicillin. (Ed., H. T. Clarke, J. R. Johnson and R. Robinson) Princeton: Univ. Press. 1949.Google Scholar
  41. 40.
    Dawson, B.: The Crystal Structure of DL-Glutamic Acid Hydrochloride. Acta Crystallogr. 6, 81 (1953).CrossRefGoogle Scholar
  42. 41.
    Derksen, J. C. and G. C. Heringa: Szymonowicz-Festschr., Polska Gaz. Lekarska 15, 532 (1936).Google Scholar
  43. 42.
    Donohue, J.: The Crystal Structure of DL-Alanine. II. Revision of Parameters by Three-dimensional Fourier Analysis. J. Amer. Chem. Soc. 72, 949 (1950).CrossRefGoogle Scholar
  44. 43.
    Donohue, J.: The Hydrogen Bond in Organic Crystals. J. Physic. Chem. 56, 502 (1952).CrossRefGoogle Scholar
  45. 44.
    Donohue, J.: Hydrogen Bonded Helical Configurations of the Polypeptide Chains. Proc. Nat. Acad. Sci. (U. S.A.) 39, 470 (1953).CrossRefGoogle Scholar
  46. 45.
    Donohue, J. and K. N. Trueblood: The Crystal Structure of Hydroxy-L-Proline. I. Interpretation of the Three-dimensional Patterson function. Acta Crystallogr. 5, 414 (1952).CrossRefGoogle Scholar
  47. 46.
    Donohue, J. and K. N. Trueblood: The Crystal Structure of Hydroxy-L-Proline. II. Determination and Description of the Structure. Acta Crystallogr. 5, 419 (1952).CrossRefGoogle Scholar
  48. 47.
    Dyer, H. B.: The Crystal Structure of Cysteyl-glycine Sodium Iodide. Acta Crystallogr. 4, 42 (1951).CrossRefGoogle Scholar
  49. 48.
    Herzog, R. O. und W. Jancke: Über den physikalischen Aufbau einiger hochmolekularer organischer Verbindungen. 1. vorl. Mitt. Ber. dtsch. chem. Ges. 53, 2162 (1920); Festschrift der Kaiser Wilhelm-Ges., S. 118 (1921).CrossRefGoogle Scholar
  50. 49.
    Huggins, M. L.: Hydrogen Bridges in Organic Compounds. J. Organ. Chem. (U. S. A.) 1, 407 (1936).CrossRefGoogle Scholar
  51. 50.
    Huggins, M. L.: The Structure of Fibrous Proteins. Chem. Rev. 32, 195 (1943).CrossRefGoogle Scholar
  52. 51.
    Hughes, E. W., A. B. Biswas and J. N. Wilson: The Crystal Structure of α-Glycylglycine. Acta Crystallogr. (to be published).Google Scholar
  53. 52.
    Hughes, E. W. and W. J. Moore: The Crystal Structure of β-Glycylglycine. J. Amer. Chem. Soc. 71, 2618 (1949).CrossRefGoogle Scholar
  54. 53.
    Katz, L., R. A. Pasternak and R. B. Corey: Configuration of the Peptide Link and of Asparagine in Glycyl-L-Asparagine. Nature (London) 170, 1066 (1952).CrossRefGoogle Scholar
  55. 54.
    Kendrew, J. C.: Structure of Proteins. Nature (London) 173, 57 (1954).CrossRefGoogle Scholar
  56. 55.
    Kratky, O.: Über Scidenfibroin. II. Z. physik. Chem., Abt. B 5, 297 (1929).Google Scholar
  57. 56.
    Kratky, O. und S. Kuriyama: Über Scidenfibroin. III. Z. physik. Chem., Abt. B 11, 363 (1930).Google Scholar
  58. 57.
    Kratky, O. und H. Mark: Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. Röntgenographie. Fortschr. Chem. organ. Naturstoffe 1, 255 (1938).Google Scholar
  59. 58.
    Leonard, J. E. and R. A. Pasternak: The Unit-cell Dimensions and the Space Groups of Some Simple Peptides of Glycine, Alanine, and Leucine. Acta Crystallogr. 5, 150 (1952).CrossRefGoogle Scholar
  60. 59.
    Lévy, H. A. and R. B. Corey: The Crystal Structure of DL-Alanine. J. Amer. Chem. Soc. 63, 2095 (1941).CrossRefGoogle Scholar
  61. 60.
    Lonsdale, K.: Divergent-beam X-ray Photography of Crystals. Trans. Roy. Soc. (London), Ser. A 240, 244 (1947).CrossRefGoogle Scholar
  62. 61.
    Low, B. W.: In: The Proteins, Vol. 1, chapter 4, p. 235. (Ed., H. Neurath and K. Bailey) New York: Acad. Press. 1953.Google Scholar
  63. 62.
    Low, B. W. and R. B. Baybutt: The Pi Helix—A Hydrogen Bonded Configuration of the Polypeptide Chain. J. Amer. Chem. Soc. 74, 5806 (1952).CrossRefGoogle Scholar
  64. 63.
    Low, B. W. and H. J. Grenville-Wells: Generalized Mathematical Relationships for Polypeptide Chain Helices. The Coordinates of the π Helix. Proc. Nat. Acad. Sci. (U. S.A.) 39, 785 (1953).CrossRefGoogle Scholar
  65. 64.
    MacArthur, I.: Structure of α-Keratin. Nature (London) 152, 38 (1943).CrossRefGoogle Scholar
  66. 65.
    Marsh, R. E., L. Pauling and R. B. Corey: The Structure of Silk Fibroin (to be published).Google Scholar
  67. 66.
    Mathieson, A. McL.: The Crystal Structure of the Dimorphs of DL-Methionine. Acta Crystallogr. 5, 332 (1952).CrossRefGoogle Scholar
  68. 67.
    Mathieson, A. McL.: Polymorphism of DL-Norleucine. Acta Crystallogr. 6, 399 (1953).CrossRefGoogle Scholar
  69. 68.
    Meyer, K. H. und H. Mark: Über den Aufbau des Sciden-Fibroins. Ber. dtsch. chem. Ges. 61, 1932 (1928).CrossRefGoogle Scholar
  70. 69.
    Mirsky, A. E. and L. Pauling: On the Structure of Native, Denatured, and Coagulated Proteins. Proc. Nat. Acad. Sci. (U. S. A.) 22, 439 (1936).CrossRefGoogle Scholar
  71. 70.
    Mizushima, S., T. Simanouti, S. Nagakura, K. Kuratani, M. Tsuboi, H. Baba and O. Fujioka: The Molecular Structure of N-Methylacetamide. J. Amer. Chem. Soc. 72, 3490 (1950).CrossRefGoogle Scholar
  72. 71.
    Neuberger, A.: Stereochemistry of Amino Acids. Adv. Protein Chem. 4, 297 (1948), especially p. 321.CrossRefGoogle Scholar
  73. 72.
    Newman, R. and R. M. Badger: The Infrared Spectra of N-Acetylglycine and Diketopiperazine Polarized Radiation at 25° and at — 185° C. J. Chem. Physics 19, 1147 (1951).CrossRefGoogle Scholar
  74. 73.
    Palmer, K. J.: Lysozyme Chloride. I. X-ray Diffraction Study of Lysozyme Chloride. Abstr. of Papers, 1st Intern. Union Crystallogr., p. 17 (1948); cf. Structure Reports for 1947–1948, 11, 729.Google Scholar
  75. 74.
    Pasternak, R. A.: Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  76. 75.
    — The Crystal Structure of Glycyl-L-Tryptophan Dihydrate (unpublished).Google Scholar
  77. 76.
    Pasternak, R. A., L. Katz and R. B. Corey: The Crystal Structure of Glycyl-L-Asparagine. Acta Crystallogr. 7, 225 (1954).CrossRefGoogle Scholar
  78. 77.
    Pasternak, R. A. and J. E. Leonard: The Unit-cell Dimensions and the Space Groups of Some Alanyl Peptides. Acta Crystallogr. 5, 152 (1952).CrossRefGoogle Scholar
  79. 78.
    Pauling, L.: A Theory of the Structure and Process of Formation of Antibodies. J. Amer. Chem. Soc. 62, 2643 (1940).CrossRefGoogle Scholar
  80. 79.
    Pauling, L.: Discussion, Colloques Intern. Centre Nat. Rech. Sci. XVIII. La liaison chimique. Paris, avril 1948, p. 155.Google Scholar
  81. 80.
    Pauling, L.: On the Stability of the S8 Molecule and the Structure of Fibrous Sulfur. Proc. Nat. Acad. Sci. (U. S.A.) 35, 495 (1949).CrossRefGoogle Scholar
  82. 81.
    Pauling, L.: Les protéines. Rapports et discussions. 9e ConScil de Chimie, Inst. Intern. Chimie Solvay. (Ed., R. Stoops) Bruxelles. 1953, p. 63.Google Scholar
  83. 82.
    Pauling, L. and R. B. Corey: Two Hydrogen-bonded Spiral Configurations of the Polypeptide Chain. J. Amer. Chem. Soc. 72, 5349 (1950).CrossRefGoogle Scholar
  84. 83.
    Pauling, L. and R. B. Corey: Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains. Proc. Nat. Acad. Sci. (U. S. A.) 37, 235 (1951).CrossRefGoogle Scholar
  85. 84.
    Pauling, L. and R. B. Corey: The Structure of Synthetic Polypeptides. Proc. Nat. Acad. Sci. (U. S.A.) 37, 241 (1951).CrossRefGoogle Scholar
  86. 85.
    Pauling, L. and R. B. Corey: The Pleated Sheet; A New Layer Configuration of Polypeptide Chains. Proc. Nat. Acad. Sci. (U.S.A.) 37, 251 (1951).CrossRefGoogle Scholar
  87. 86.
    Pauling, L. and R. B. Corey: The Structure of Hair, Muscle, and Related Proteins. Proc. Nat. Acad. Sci. (U. S. A.) 37, 261 (1951).CrossRefGoogle Scholar
  88. 87.
    Pauling, L. and R. B. Corey: The Structure of Fibrous Proteins of the Collagen-Gelatin Group. Proc. Nat. Acad. Sci. (U. S. A.) 37, 272 (1951).CrossRefGoogle Scholar
  89. 88.
    Pauling, L. and R. B. Corey: The Polypeptide-Chain Configuration in Hemoglobin and Other Globular Proteins. Proc. Nat. Acad. Sci. (U. S.A.) 37, 282 (1951).CrossRefGoogle Scholar
  90. 89.
    Pauling, L. and R. B. Corey: Configurations of Polypeptide Chains with Favored Orientations Around Single Bonds: Two New Pleated Sheets. Proc. Nat. Acad. Sci. (U. S. A.) 37, 729 (1951).CrossRefGoogle Scholar
  91. 90.
    Pauling, L. and R. B. Corey: Two Pleated Sheet Configurations of Polypeptide Chains Involving Both Cis and Trans Amide Groups. Proc. Nat. Acad. Sci. (U. S. A.) 39, 247 (1953).CrossRefGoogle Scholar
  92. 91.
    Pauling, L. and R. B. Corey: Two Rippled Sheet Configurations of Polypeptide Chains, and a Note about the Pleated Sheets. Proc. Nat. Acad. Sci. (U. S. A.) 39, 253 (1953).CrossRefGoogle Scholar
  93. 92.
    Pauling, L. and R. B. Corey: Stable Configurations of Polypeptide Chains. Proc. Roy. Soc. (London), Ser. B 141, 21 (1953).CrossRefGoogle Scholar
  94. 93.
    Pauling, L. and R. B. Corey: Compound Helical Configurations of Polypeptide Chains: Structure of Proteins of the α Keratin type. Nature (London) 171, 59 (1953).CrossRefGoogle Scholar
  95. 94.
    Pauling, L., R. B. Corey and H. R. Branson: The Structure of Proteins: Two Hydrogen-bonded Helical Configurations of the Polypeptide Chain. Proc. Nat. Acad. Sci. (U. S. A.) 37, 205 (1951).CrossRefGoogle Scholar
  96. 95.
    Pauling, L., R. B. Corey and L. R. Lavine: (unpublished).Google Scholar
  97. 96.
    Perutz, M. F.: An X-ray Study of Horse Methaemoglobin. II. Proc. Roy. Soc. (London), Ser. A 195, 474 (1949).CrossRefGoogle Scholar
  98. 97.
    Perutz, M. F.: Crystallography. Structure of Proteins and Related Compounds. Annu. Rep. Progr. Chem. 48, 361 (1951).CrossRefGoogle Scholar
  99. 98.
    Perutz, M. F.: New X-ray Evidence on the Configuration of Polypeptide Chains. Nature (London) 167, 1053 (1951).CrossRefGoogle Scholar
  100. 99.
    — A Fourier Projection of Hemoglobin. Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  101. 100.
    Pitt, G. J.: A Refinement of the Crystal Structure of Potassium Benzyl-penicillin. Acta Crystallogr. 5, 770 (1952).CrossRefGoogle Scholar
  102. 101.
    Randall, J. T.: Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  103. 102.
    Riley, D. P.: Conference on the Structure of Proteins, Pasadena, Calif., Sept. 1953.Google Scholar
  104. 103.
    Riley, D. P. and U. W. Arndt: New Type of X-ray Evidence on the Molecular Structure of Globular Proteins. Nature (London) 169, 138 (1952).CrossRefGoogle Scholar
  105. 104.
    Riley, D. P. and U. W. Arndt: X-ray Scattering by Some Native and Denatured Proteins in the Solid State. Proc. Roy. Soc. (London), Ser. B 141, 93 (1953).CrossRefGoogle Scholar
  106. 105.
    Robinson, C. and E. J. Ambrose: Atomic Models. 2. The Use of Atomic Models in Investigating Stable Configurations of Protein Chains. Trans. Faraday Soc. 48, 854 (1952).CrossRefGoogle Scholar
  107. 106.
    Romers, C.: The Structure of Oxamide. Acta Crystallogr. 6, 429 (1953).CrossRefGoogle Scholar
  108. 107.
    Rudall, K. M.: Fibrous Proteins. Sympos. Soc. Dyers Colourists, England, 1946, p. 15.Google Scholar
  109. 107a.
    Rudall, K. M.: The Proteins of the Mammalian Epidermis. Adv. Protein Chem. 7, 253 (1952).CrossRefGoogle Scholar
  110. 108.
    Rudall, K. M.: Elastic Properties and α,β-Transformation of Fibrous Proteins. Proc. Roy. Soc. (London), Ser. B 141, 39 (1953).CrossRefGoogle Scholar
  111. 109.
    Sanger, F. and E. O. P. Thompson: The Amino-acid Sequence in the Glycyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochemie. J. 53, 366 (1953).Google Scholar
  112. 110.
    Sanger, F. and H. Tuppy: The Amino-acid Sequence in the Phenylalanyl Chain of Insulin. 2. The Investigation of Peptides from Enzymic Hydrolysates. Biochemie. J. 49, 481 (1951).Google Scholar
  113. 111.
    Schuch, A. F., L. L. Merritt, Jr. and J. H. Sturdivant: The Crystal Structure of Urea Oxalate (unpublished).Google Scholar
  114. 112.
    Shoemaker, D. P., R. E. Barieau, J. Donohue and C. S. Lu: The Crystal Structure of DL-Serine. Acta Crystallogr. 6, 241 (1953).CrossRefGoogle Scholar
  115. 113.
    Shoemaker, D. P., J. Donohue, V. Schomaker and R. B. Corey: The Crystal Structure of Ls-Threonine. J. Amer. Chem. Soc. 72, 2328 (1950).CrossRefGoogle Scholar
  116. 114.
    Simanouti, T. and S. Mizushima: Intramolecular Rotation and the Structure of High Polymers. I. The Structure of Polypeptide Chain. Bull. Chem. Soc. Japan 21. 1 (1948).CrossRefGoogle Scholar
  117. 115.
    Sly, W. G. and J. H. Sturdivant: The Crystal Structure of Oxamide (unpublished).Google Scholar
  118. 116.
    Smits, D. W. and E. H. Wiebenga: The Crystal Structure of Glycyl-L-Tyrosine Hydrochloride. Acta Crystallogr. 6, 531 (1953).CrossRefGoogle Scholar
  119. 117.
    Tranter, T. C.: Unit-cell Dimensions and Space Groups of Synthetic Peptides. I. Glycyl-L-Tyrosine, Glycyl-L-Tyrosine Hydrochloride, Glycyl-DL-Serine, and Glycyl-DL-Leucine. Acta Crystallogr. 5, 843 (1952).CrossRefGoogle Scholar
  120. 118.
    Tranter, T. C.: Unit-cell Dimensions and Space Groups of Synthetic Peptides. II. Glycyl-L-Alanine, Glycyl-L-Alanine Hydrochloride, Glycyl-L-Alanine Hydrobromide, and Glycyl-L-Tryptophane. Acta Crystallogr. 6, 805 (1953).CrossRefGoogle Scholar
  121. 118a.
    Tranter, T. C.: Unit-cell Dimensions and Space Groups of Synthetic Peptides. III. Glycyl-L-valine Hydrobromide, Glycyl-L-valine Hydrochloride, and DL-Alanyl-DL-methionine. Acta Crystallogr. 7, 134 (1954).CrossRefGoogle Scholar
  122. 118b.
    Tranter, T. C.: Crystal Structure of Glycyl-L-alanine Hydrobromide. Nature (London) 173, 221 (1954).CrossRefGoogle Scholar
  123. 119.
    Trogus, C. und K. Hess: Zur Kenntnis der natürlichen Sciden und ihres Verhaltens gegen Säuren und Basen. Biochem. Z. 260, 376 (1933).Google Scholar
  124. 120.
    Vaughan, P. and J. Donohue: The Structure of Urea. Interatomic Distances and Resonance in Urea and Related Compounds. Acta Crystallogr. 5, 530 (1952).CrossRefGoogle Scholar
  125. 121.
    Warren, B. E. and J. T. Burwell: The Structure of Rhombic Sulfur. J. Chem. Physics 3, 6 (1935).CrossRefGoogle Scholar
  126. 122.
    Yakel, H. L., Jr. and E. W. Hughes: The Unit-cell Dimensions and Space Groups of Two Modifications of Crystalline Glycylglycylglycine. Acta Crystallogr. 5, 847 (1952).CrossRefGoogle Scholar
  127. 123.
    The Structure of N,N’-Diglycyl-L-cystine Dihydrate. J. Amer. Chem. Soc. 74, 6302 (1952).Google Scholar
  128. 124.
    The Crystal Structure of N,N’-Diglycyl-L-cystine Dihydrate. Acta Crystallogr. 7, 291 (1954).Google Scholar
  129. 125.
    Zahn, H.: Über die Struktur des α-Keratins. Z. Naturforsch. 2 b, 104 (1947).Google Scholar
  130. 126.
    Zussman, J.: The Structure of Hydroxyproline. Acta Crystallogr. 4, 72 (1951).CrossRefGoogle Scholar
  131. 127.
    Zussman, J.: The Structure of Hydroxyproline. Acta Crystallogr. 4, 493 (1951).CrossRefGoogle Scholar

Copyright information

© Wien · Springer - Verlag 1954

Authors and Affiliations

  • Linus Pauling
    • 1
  • Robert B. Corey
    • 1
  1. 1.PasadenaUSA

Personalised recommendations