Advertisement

Abstract

Native Rubber (Hevea brasiliensis) was for many decades the only known substance which exhibited typical “rubber elasticity” that is a long range (up to 1500%), low modulus (around 106 dynes per cm2) reversible extensibility. This exceptional mechanical behavior was, therefore, for a long time considered to be a consequence of the special chemical structure of native rubber, which was recognized to be a polymer of isoprene (52, 53, 86). Since then many other substances were discovered, which show to a higher or lesser degree all typical features of rubber elasticity, although they have widely different chemical compositions. Polymeric hydrocarbons, alcohols, esters, amides, chlorohydrocarbons, fluorocarbons and silicones, they all have rubbery representatives, and the only common and necessary feature appears to be that the material is built up by linear flexible macromolecules. Together with the synthesis of many new elastomers there went during the last twenty years a systematic quantitative study of the thermal and mechanical properties of these materials under various conditions which led to the conviction that “rubberiness” is not connected with any special chemical composition but much rather is characteristic for a special state of matter, which exhibits its startling properties over a certain range of the experimental variables such as temperature, stress, strain and time. This new concept poses for the phenomenological description and the molecular interpretation of rubber elasticity a number of interesting problems, the present state of which shall be briefly reviewed in this article. These current problems of rubber elastic behavior can be listed as follows:
  • Qualitative understanding of the principles of rubberiness.

  • Information on the structural details, the average molecule weight and weight distribution of macromolecules which form elastomers.

  • Quantitative data characterizing the three-dimensional networks built up by these macromolecules through crosslinkings in the bulk phase.

  • Statistical thermodynamics of rubber elasticity.

  • We shall now proceed to discuss these points in some detail.

Keywords

Natural Rubber Intrinsic Viscosity Butyl Rubber Number Average Molecular Weight Rubber Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfrey, T.: Mechanical Behavior of High Polymers. New York: Interscience Publ. 1948.Google Scholar
  2. 2.
    Alfrey, T., Jr., J. J. Bohrer and H. Mark: Copolymerization. New York: Interscience Publ. 1952.Google Scholar
  3. 3.
    Andrews, R. D., N. Hofman-Bang and A. V. Tobolsky: Elastoviscous Properties of Polyisobutylene. I. Relaxation of Stress in Whole Polymer of Different Molecular Weights and Elevated Temperatures. J. Polymer Sci. 3, 669 (1948).CrossRefGoogle Scholar
  4. 4.
    Baker, W. O. and C. S. Fuller: Intermolecular Forces and Chain Configuration in Linear Polymers. The Effect of N-Methylation on the X-Ray Structures and Properties of Linear Polyamides. J. Amer. chem. Soc. 65, 1120 (1943).CrossRefGoogle Scholar
  5. 5.
    Baker, W. O., C. S. Fuller and N. R. Pape: Effects of Heat, Solvents and Hydrogen-bonding Agents on the Crystallinity of Cellulose Esters. J. Amer. chem. Soc. 64, 776 (1942).CrossRefGoogle Scholar
  6. 6.
    Barry, A. J.: Viscometric Investigation of Dimethylsiloxane Polymers. J. appl. Physics 17, 1020 (1946).CrossRefGoogle Scholar
  7. 7.
    Bayer, O., E. Müller, S. Petersen, H.-F. Piepenbrink und E. Windemuth: Über neuartige hochelastische Stoffe “Vulcollan”, 6. Mitt. über Polymethane. Angew. Chemie 62, 57 (1950).CrossRefGoogle Scholar
  8. 8.
    New Types of Highly Elastic Substances. Vulcollans. Rubber Chem. Techn. 23, 812 (1950).CrossRefGoogle Scholar
  9. 9.
    Beaman, R. G.: Relation Beteween (Apparent) Second-Order Transition Temperature and Melting Point. J. Polymer Sci. 9, 470 (1952).CrossRefGoogle Scholar
  10. 10.
    Bekkedahl, N.: Forms of Rubber as Indicated by Temperature-Volume Relationship. J. Res. Nat. Bur. Standards 13, 411 (1934).Google Scholar
  11. 11.
    Bekkedahl, N.: Forms of Rubber as Indicated by Temperature-Volume Relationship. Rubber Chem. Techn. 8, 5 (1935)Google Scholar
  12. 12.
    Beu, K. E., W. B. Reynolds, C. F. Fryling and H. L. Mcmurry: X-Ray Studies of Low-Temperature Polybutadiene and Butadiene-Styrene Copolymers. J. Polymer Sci. 3, 465 (1948).CrossRefGoogle Scholar
  13. 13.
    Boyer, R. F. and R. S. Spencer: Second-Order Transition Effects in Rubber and Other High Polymers. Adv. Colloid Sci. 2, 1 (1946).Google Scholar
  14. 14.
    Boyer, R. F. and R. S. Spencer: Effect of Plasticizers on Second-Order Transition Points of High Polymers. J. Polymer Sci. 2, 157 (1947).CrossRefGoogle Scholar
  15. 15.
    Brill, R und F. Halle: Über das kautschukähnliche Verhalten eines Kunststoffes (Oppanol) im Röntgenlicht. Naturwiss. 26, 12 (1938).CrossRefGoogle Scholar
  16. 16.
    Bonn, C. W.: The Crystal Structure of Long-Chain Normal Paraffin Hydrocarbons. The “Shape” of the CH2 Group. Trans. Faraday Soc. 35, 482 (1939).CrossRefGoogle Scholar
  17. 16a.
    Bonn, C. W.: Molecular Structure and Rubber-Like Elasticity. I. The Crystal Structures of ß-Gutta-percha, Rubber and Polychloroprene. Proc. Roy. Soc. (London), Ser. A 180, 40 (1942).CrossRefGoogle Scholar
  18. 17.
    Carothers, W. H.: Collected Papers on High Polymeric Substances. (Vol. I “On High Polymers”). New York: Interscience Publ. 1940.Google Scholar
  19. 18.
    Carothers, W. H., I. Williams, A. M. Collins and J. E. Kirby: Acetylene Polymers and Their Derivatives. II. A New Synthetic Rubber: Chloroprene and its Polymers. J. Amer. chem. Soc. 53, 4203 (1931).CrossRefGoogle Scholar
  20. 19.
    Catlin, W. E., E. P. Czerwin and R. H. Wiley: Multi-ingredient Polyamides. J. Polymer Sci. 2, 412 (1947).CrossRefGoogle Scholar
  21. 20.
    Dart, S. L., R. L. Anthony and E. Guth: Rise of Temperature on Fast Stretching of Synthetics and Natural Rubbers. Ind. Engng. Chem. 34, 1340 (1942).CrossRefGoogle Scholar
  22. 21.
    Davis, C. C. and J. T. Blake: Chemistry and Technology of Rubber. New York: Reinhold Publ. Co. 1937.Google Scholar
  23. 22.
    Debye, P. and A. M. Bueche: Intrinsic Viscosity, Diffusion, and Sedimentation Rate of Polymers in Solution. J. chem. Physics 16, 573 (1948).CrossRefGoogle Scholar
  24. 23.
    D’ianni, J. D., F. J. Naples and J. E. Field: Butadiene Polymers and Poly-isoprene. Ind. Engng. Chem. 42, 95 (1950).CrossRefGoogle Scholar
  25. 24.
    Dillon, J. H., I. B. Prettyman and G. L. Hall: Hysteretic and Elastic PIoperties of Rubberlike Materials Under Dynamic Shear Stresses. J. appl. Physics 15, 309 (1944)CrossRefGoogle Scholar
  26. 25.
    Doty, P. M. and H. S. Zable: Determination of Polymer-Liquid Interaction by Swelling Measurements. J. Polymer Sci. 1, 90 (1946).CrossRefGoogle Scholar
  27. 26.
    Edgar, O. B.: Structure-Property Relationships in Polyethylene Teraphthalate Co-polyesters. II. Second-order Transition Temperatures. J. chem. Soc. ( London ) 1952, 2638.Google Scholar
  28. 27.
    Edgar, O. B. and E. Ellery: Structure-Property Relationships in Polyethylene Terephthalate Co-polyesters. I. Melting Points. J. chem. Soc. ( London ) 1952, 2633.Google Scholar
  29. 28.
    Evans, A. G. and M. Polanyi: Some Aspects of the Chemistry of Macromolecules. I. Polymerisation of isoButene by Friedel-Crafts Catalysts. J. chem. Soc. ( London ) 1947, 252.Google Scholar
  30. 29.
    Ewart, R. H.: Significance of Viscosity Measurements on Dilute Solutions of High Polymers. Adv. Colloid Sci. 2, 197 (1946).Google Scholar
  31. 30.
    Flory, P. J.: Molecular Weights and Intrinsic Viscosities of Polyisobutylenes. J. Amer. chem. Soc. 65, 372 (1943).CrossRefGoogle Scholar
  32. 31.
    Flory, P. J.: Network Structure and the Elastic Properties of Vulcanized Rubber. Chem. Reviews 35, 51 (1944).CrossRefGoogle Scholar
  33. 32.
    Flory, P. J.: Effects of Molecular Structure on Physical Properties of Butyl Rubber. Ind. Engng. Chem. 38, 417 (1946).CrossRefGoogle Scholar
  34. 33.
    Flory, P.J.: Fundamental Principles of Condensation Polymerization. Chem. Reviews 39, 137 (1946).CrossRefGoogle Scholar
  35. 34.
    Flory, P. J.: Thermodynamics of Crystallization in High Polymers. IV. A Theory of Crystalline States and Fusion in Polymers, Copolymers, and Their Mixtures with Diluents. J. chem. Physics 17, 223 (1949).CrossRefGoogle Scholar
  36. 35.
    Flory, P. J., L. Mandelkern, J. B. Kinsinger and W. B. Schultz: Molecular Dimensions of Polydimethylsiloxanes. J. Amer. chem. Soc. 74, 3364 (1952).CrossRefGoogle Scholar
  37. 36.
    Flory, P. J., N. Rabjohn and M. C. Shaffer: Dependence of Elastic Properties of Vulcanized Rubber on the Degree of Cross Linking J Polymer Sci. 4, 225 (1949).Google Scholar
  38. 37.
    Flory, P. J. and J. Refiner, Jr.: Statistical Mechanics of Cross-Linked Polymer Networks. II. Swelling. J. chem. Physics 11, 521 (1943).CrossRefGoogle Scholar
  39. 38.
    Fox, T. G., Jr. and P. J. Flory: Viscosity-Molecular Weight and Viscosity-Temperature Relationships for Polystyrene and Polyisobutylene. J. Amer. chem. Soc. 70, 2384 (1948).CrossRefGoogle Scholar
  40. 39.
    Fox, T. G., Jr. and P. J. Flory: Intrinsic Viscosity-Molecular Weight Relations for Polyisobutylene. J. Phys. and Coll. Chem. 53, 197 (1949).CrossRefGoogle Scholar
  41. 40.
    Fox, T. G., Jr. and P. J. Flory: Intrinsic Viscosity-Temperature Relationship for Polyisobutylene in Various Solvents. J. Amer. chem. Soc. 73, 1909 (1951).CrossRefGoogle Scholar
  42. 41.
    Fox, T. G., Jr. and P. J. Flory: Intrinsic Viscosity Relationship for Polystyrene. J. Amer. chem. Soc. 73, 1915 (1951).CrossRefGoogle Scholar
  43. 42.
    French, D. M. and R. H. Ewart: Molecular Weight of GR-S Fractions. Simple Glass Osmometer for Use in Hydrocarbon Solvents. Analyt. Chemistry 19, 165 (1947).CrossRefGoogle Scholar
  44. 43.
    Fuller, C. S.: The Investigation of Synthetic Linear Polymers by X-Rays. Chem. Reviews 26, 143 (1940).CrossRefGoogle Scholar
  45. 44.
    Fox, T. G., Jr. and P. J. Flory: Mixed Crystal Formation in Linear Copolyesters. J. Amer. chem. Soc. 70, 421 (1948).Google Scholar
  46. 45.
    Fuller, C. S., W. O. Baker and N. R. Pape: Crystalline Behavior of Linear Polyamides. Effect of Heat Treatment. J. Amer. chem. Soc. 62, 3275 (1940).CrossRefGoogle Scholar
  47. 46.
    Fuller, C. S., C. J. Frosch and N. R. Pape: X-Ray Examination of Polyisobutylene. J. Amer. chem. Soc. 62, 1905 (1940).CrossRefGoogle Scholar
  48. 47.
    Fuller, C. S., C. J. Frosch and N. R. Pape: Chain Structure of Linear Polyesters. Trimethylene Glycol Series. J. Amer. chem. Soc. 64, 154 (1942).CrossRefGoogle Scholar
  49. 48.
    Gee, G.: The Interaction Between Rubber and Liquids. III. The Swelling of Vulcanised Rubber in Various Liquids. Trans. Faraday Soc. 38, 418 (1942).CrossRefGoogle Scholar
  50. 49.
    Gee, G.: The Thermodynamic Study of Rubber Solutions and Gels. Adv. Colloid Sci. 2, 145 (1946).Google Scholar
  51. 50.
    Gough, J.: Investigations on Rubber. Mem. Proc. Manchester Philos. Soc. 1, 288 (1806).Google Scholar
  52. 51.
    Hampton, R. R.: Infrared Analysis of Low Temperature Polymers. Analyt. Chemistry 21, 923 (1949).CrossRefGoogle Scholar
  53. 52.
    Harries, C.: Über den Abbau des Parakautschuks vermittelst Ozon. Ber. dtsch. chem. Ges. 37, 2708 (1904).CrossRefGoogle Scholar
  54. 53.
    Harries, C.: Zur Kenntnis der Kautschukarten. Über die Beziehungen zwischen den Kohlenwasserstoffen aus Kautschuk und Guttapercha. Ber. dtsch. chem. Ges. 38, 3985 (1905).CrossRefGoogle Scholar
  55. 54.
    Harries, C.: Über Kohlenwasserstoffe der Butadienreihe und über einige aus ihnen darstellbare künstliche Kautschukarten. Liebigs Ann. Chem. 383, 157 (1911);Google Scholar
  56. Harries, C.: Nachtrag, ebenda 385, 116 (1912).Google Scholar
  57. 55.
    Hart, E. J. and A. W. Meyer: Infrared Studies of 1,2- and trans 1,4-Structure of Polybutadiene and Butadiene-Styrene Copolymers Polymerized at Various Temperatures. J. Amer. chem. Soc. 71, 198o (1949).Google Scholar
  58. 56.
    Hill, R. and E. E. Walker: Polymer Constitution and Filter Properties. J. Polymer Sci. 3, 609 (1948).CrossRefGoogle Scholar
  59. 57.
    Hock, L.: Beziehungen zwischen elastischer Nachwirkung und Temperatur bei Rohkautschuk und Vulkanisaten. Kolloid-Z. 35, 40 (1924).CrossRefGoogle Scholar
  60. 58.
    Hohenstein, W. P. and H. Mark: Polymerization of Olefins and Diolefins in Suspension and Emulsion. I. J. Polymer Sci. 1, 127 (1946).CrossRefGoogle Scholar
  61. 59.
    Hohenstein, W. P. and H. Mark: Polymerization of Olefins and Diolefins in Suspension and Emulsion. II. J. Polymer Sci. 1, 549 (1946).CrossRefGoogle Scholar
  62. 60.
    Huggins, M. L.: The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Amer. chem. Soc. 64, 2716 (1942).CrossRefGoogle Scholar
  63. 61.
    Izard, E. F.: The Effect of Chemical Composition on Selected Physical Properties of Linear Polymers. J. Polymer Sci. 8, 503 (1952).CrossRefGoogle Scholar
  64. 62.
    Izard, E. F. and S. L. Kwolek: Esters of ß-Carboxyphenoxyalkanoic Acids. J. Amer. chem. Soc. 73, 1861 (1951).CrossRefGoogle Scholar
  65. 63.
    James, H. M. and E. Guth: Theory of the Elastic Properties of Rubber. J. chem. Physics 11, 455 (1943).CrossRefGoogle Scholar
  66. 64.
    James, H. M. and E. Guth: Statistical Treatment of Imperfectly Flexible Chains. J. chem. Physics 15, 531 (1943).CrossRefGoogle Scholar
  67. 65.
    Jenckel, E. und K. Ueberreiter: Über Polystyrolgläser verschiedener Kettenlänge. Z. physik. Chem., Abt. A 182, 361 (1938).Google Scholar
  68. 66.
    Joule, J. P.: Investigations on Rubber. Phil. Mag. 14, 227 (1857).Google Scholar
  69. 67.
    Katz, J. R.: Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwiss. 53, 410 (1925).CrossRefGoogle Scholar
  70. 68.
    Kelvin (Lord): Collected Works, Vol. I, p. 291, 309 et segn. 1855.Google Scholar
  71. 69.
    Kirkwood, J. G. and J. Riseman: The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution. J. Chem. Physics 16, 565 (1948)CrossRefGoogle Scholar
  72. 70.
    Kolthoff, I. M., T. S. Lee and M. A. Mairs: Use of Perbenzoic Acid in Analysis of Unsaturated Compounds. III. Results of Determinations of External Double Bonds In Synthetic Rubbers. J. Polymer Sci. 2, 220 (1947).CrossRefGoogle Scholar
  73. 71.
    Kraemer, E. O. Molecular Weights of Celluloses and Cellulose Derivatives. Ind. Engng. Chem. 30, 1200 (1938).CrossRefGoogle Scholar
  74. 72.
    Kraemer, E. O. and F. J. Van Natta: Viscosity and Molecular Weights of Polymeric Materials. J. physic. Chem. 36, 3175 (1932).CrossRefGoogle Scholar
  75. 73.
    Kraemer, E. O. and J. B. Nichols: in TH. Svedberg and K. O. Pedersen: The Ultracentrifuge, p. 416. London: Oxford Univ. Press. 1940.Google Scholar
  76. 74.
    Kratky, O. und H. Mark: Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. Röntgenographie. Fortschr. Chem. organ. Naturstoffe 1, 255 (1938).Google Scholar
  77. 75.
    Kuhn, W.: Über Teilchenform und Teilchengröße aus Viscosität und Strömungsdoppelbrechung. Z. physik. Chem., Abt. A 161, 1 (1932).Google Scholar
  78. 76.
    Kuhn, W.: Über quantitative Deutung der Viskosität und Strömungsdoppelbrechung von Suspensionen. Kolloid-Z. 62, 269 (1933).CrossRefGoogle Scholar
  79. 77.
    Kuhn, W.: Über die Gestalt fadenförmiger Moleküle in Lösungen. Kolloid-Z. 68, 2 (1934).CrossRefGoogle Scholar
  80. 78.
    Kuhn, W.: Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe. Kolloid-Z. 76, 258 (1936).CrossRefGoogle Scholar
  81. 79.
    Kuhn, W.: Molekülkonstellation und Kristallitorientierung als Ursachen kautschukähnlicher Elastizität. Kolloid-Z. 87, 3 (1939).CrossRefGoogle Scholar
  82. 80.
    Lansing, W. D. and E. O. Kraemer: The Ultracentrifuge, p. 423. Oxford Univ. Press. 1940Google Scholar
  83. Lansing, W. D. and E. O. Kraemer: J. Amer. chem. Soc. 57, 1369 (1935).CrossRefGoogle Scholar
  84. 81.
    Marchionna, F.: Butalastic Polymers. Their Preparation and Applications; a Treatise on Synthetic Rubbers. New York: Reinhold Publ. Co. 1946.Google Scholar
  85. 82.
    Mark, H. and A. V. Tobolsky: Physical Chemistry of High Polymeric Systems (Vol. II “On High Polymers”). znd ed. New York and London: Interscience Publ. 1950.Google Scholar
  86. 83.
    Matthes, A.: Grundlagen einer Viscosimetrischen Polymerisationsgradbestimmung und gestaitliche Verhältnisse der Polyamide in Lösung. J. prakt. Chem. 162, 245 (1943).CrossRefGoogle Scholar
  87. 84.
    Mayo, R. F. and CH. Walling: Copolymerization. Chem. Reviews 46, 191 (1950).CrossRefGoogle Scholar
  88. 85.
    Meyer, A. W.: Effects of Polymerization Temperature on Structure. Ind. Engng. Chem. 41, 1570 (1949).CrossRefGoogle Scholar
  89. 86.
    Meyer, K. H.: Natural and Synthetic High Polymers. New York: Interscience Publ. 1951.Google Scholar
  90. 87.
    Meyer, K. H. et C. Ferri: Sur l’élasticité du caoutchouc. Heiv. chim Acta 18, 570 (1935).CrossRefGoogle Scholar
  91. 87a.
    Meyer, K. H. et C. Ferri: The Elasticity of Rubber. Rubber Chem. Techn. 8, 319 (1935).Google Scholar
  92. 88.
    Meyer, K. H., G. v. Susich und E. Valkô: Die elastischen Eigenschaften der organischen Hochpolymeren und ihre kinetische Deutung. Kolloid-Z. 59, 208 (1932).CrossRefGoogle Scholar
  93. 89.
    Mochel, W. E. and J. B. Nicnols: The Structure of Neoprene. III. The Molecular Weight Distribution of Neoprene Type CG. J. Amer. chem. Soc. 71, 3435 (1949).CrossRefGoogle Scholar
  94. 90.
    Mochel, W. E., J. B. Nichols and C. J. Mighton: The Structure of Neoprene. I. The Molecular Weight Distribution of Neoprene Type GN. J. Amer. chem. Soc. 70, 2185 (1948).Google Scholar
  95. 91.
    Morton, A. A.: Alf in Catalysts and the Polymerization of Butadiene. Ind. Engng. Chem. 42, 1488 (1950).CrossRefGoogle Scholar
  96. 92.
    Norrish, R. G. W. and K. E. Russell: Friedel-Crafts Catalyst in Polymerization. Nature (London) 160, 543 (1947).CrossRefGoogle Scholar
  97. 93.
    Plesch, P. H.: The Low-temperature Polymerisation of isoButene. II. J. chem. Soc. ( London ) 1950, 543.Google Scholar
  98. 94.
    Plesch, P. H., M. Polanyi and H. A. Skinner: Some Aspects of the Chemistry of Macromolecules. II. The Low-temperature Polymerisation of isoButene by Friedel-Crafts Catalysts. J. chem. Soc. ( London ) 1947, 257.Google Scholar
  99. 95.
    Pummerer, R., A. Andriessen und W. Gundel: Über Reinigung und Fraktionierung von Kautschuk. 7. Mitt. Ber. dtsch. chem. Ges. 61, 1583 (1928).CrossRefGoogle Scholar
  100. 96.
    Pummerer, R. und H. Pahl: Über die Darstellung von Reinkautschuk aus Latex mittels Alkalis und seine Zerlegung in Sol-und Gel-Kautschuk. Ber. dtsch. chem. Ges. 60, 2152 (1927).Google Scholar
  101. 97.
    Scott, D. W.: Osmotic Pressure Measurements with Polydimethylsilicone Fractions. J. Amer. chem. Soc. 68, 1877 (1946).CrossRefGoogle Scholar
  102. 98.
    Scott, R. L., W. C. Carter’ and M. Magat: Viscosity-Molecular Weight Relations for Various Synthetic Rubbers. J. Amer. chem. Soc. 71, 220 (1949).CrossRefGoogle Scholar
  103. 99.
    Scott, R. L. and M. Magat: Thermodynamics of High-Polymer Solutions. III. Swelling of Cross-Linked Rubber. J. Polymer Sci. 4, 555 (1949).CrossRefGoogle Scholar
  104. 100.
    Staudinger, H.: Die hochmolekularen organischen Substanzen. Berlin: Springer. 1930.Google Scholar
  105. 101.
    Staudinger, H. und Fr. Berndt: Über die Gültigkeit des Viscositätsgesetzes bei Polyoxydecansäuren. Makromol. Chemie 1, 22 (1947).CrossRefGoogle Scholar
  106. 102.
    Staudinger, H. und FR. Berndt: Über Polyoxyundecansäuren. Makromol. Chemie 1, 36 (1947).CrossRefGoogle Scholar
  107. 103.
    Staudinger, H. und H. Schnell: Über die Gültigkeit des Viscositätsgesetzes bei Polyaminocapronsäuren Makromol. Chemie 1, 44 (1947).Google Scholar
  108. 104.
    Sutherland, G. B. B. M. and A. V. Jones: The Application of Polarized Infra-red Radiation to Problems in Molecular Structure. Discuss. Faraday Soc. 9, 281 (1950).CrossRefGoogle Scholar
  109. 105.
    Tammann, G.: Der Glaszustand. Leipzig: Voss. Verlag. 1933.Google Scholar
  110. 106.
    Taylor, G. B.: The Relation of the Viscosity of Nylon Solutions in Formic Acid to Molecular Weight as Determined by End-Group Measurements. J. Amer. chem. Soc. 69, 635 (1947).CrossRefGoogle Scholar
  111. 106a.
    Taylor, G. B.: The Distribution of the Molecular Weight of Nylon as Determined by Fractionation in a Phenol-Water System. J. Amer. chem. Soc. 69, 638 (1947)CrossRefGoogle Scholar
  112. 107.
    Thomas, R. M. and W. J. Sparks: U. S. Patent 2356128 (1940).Google Scholar
  113. r08.
    Thomas, R. M., W. J. Sparks, P. K. Frohlich, M. Otto and M. Mueller-Cunradi: Preparation and Structure of High Molecular Weight Polybutenes. J. Amer. chem. Soc. 62, 276 (1940).CrossRefGoogle Scholar
  114. 109.
    Tobolsky, A. V., I. B. Prettyman and J. H. Dillon: Stress Relaxation of Natural and Synthetic Rubber Stocks. J. appl. Physics 15, 380 (1944).CrossRefGoogle Scholar
  115. 110.
    Treloar, L. R. G.: The Elasticity of a Network of Long-Chain Molecules. II. Trans. Faraday Soc. 39, 241 (1943).CrossRefGoogle Scholar
  116. 111.
    Treloar, L. R. G.: Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation. Trans. Faraday Soc. 40, 59 (1944).CrossRefGoogle Scholar
  117. 112.
    Tschunkur, E. und W. Bock: D. R. Patent 570980 (1929).Google Scholar
  118. 113.
    Wall, F. T.: Statistical Lengths of Rubber-Like Hydrocarbon Molecules. J. chem. Physics 11, 67 (1943).CrossRefGoogle Scholar
  119. 114.
    Wall, F. T.: Statistical Thermodynamics of Rubber. III. J. chem. Physics 11, 527 (1943).CrossRefGoogle Scholar
  120. 115.
    Whinfield, J. R.: Chemistry of “Terylene”. Nature (London) 158, 930 (1946).CrossRefGoogle Scholar
  121. 146.
    Wittbecker, E. L., R. C. Houtz and W. W. Watkins: Elastic N-Substituted Polyamides. Ind. Engng. Chem. 40, 875 (1948).CrossRefGoogle Scholar
  122. 117.
    Wood, L. A.: Crystallization Phenomena in Natural and Synthetic Rubbers. Adv. Colloid Sci. 2, 57 (1946).Google Scholar
  123. 118.
    Yanko, J. A.: Physical Properties of Fractions of GR-S ana Their Vulcanizates. J. Polymer Sci. 3, 576 (1948).CrossRefGoogle Scholar
  124. 119.
    Zimm, B. H.: The Scattering of Light and the Radial Distribution Function of High Polymer Solutions. J. chem. Physics 16, 1093 (1948).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1953

Authors and Affiliations

  • H. Mark
    • 1
  1. 1.BrooklynUSA

Personalised recommendations