Skip to main content

Epi-retinal prosthesis

  • Chapter
The Macula

Abstract

Retinitis pigmentosa (RP) and age-related macula degeneration (AMD) lead to the degeneration of photoreceptors, resulting in a significant visual deficit for the afflicted individual [1]. Research is proceeding to investigate the feasibility of replacing the function of the photoreceptors with an electronic device [2, 3]. The photoreceptors initiate a neural signal in response to light. The experiments to be discussed investigate the possibility of using electrical signals (generated by a retinal prosthesis) to initiate a neural response in the remaining cells of the retina. Results from both animal and human research conducted over the past decade have established the following: Intraocular stimulating electrodes can evoke focal responses that correlate with the stimulus position and timing [4–6], the inner retina in RP and AMD is relatively unharmed even when the outer retina is severely degenerated [7–9], and a device can be implanted on the surface of the retina without causing significant damage to the retina [10, 11]. Based on these preliminary trials, an FDA approved clinical trial was intiated to assess safety of implantation of an epiretinal device in humans blind from retinitis pigmentosa. 2 human volunteers have used permanently implanted devices to detect ambient light and sense motion. Based on these encouraging results, the current focus is being shifted from feasibility studies to the development of an implantable, electronic device, which will be capable of stimulating the retina at hundreds of individual points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heckenlively JR, Boughman J, Friedman L (1988) Diagnosis and classification of retinitis pigmentosa. In: Heckenlively JR (ed) Retinitis pigmentosa. Philadelphia, PA: JB Lippincott, 21

    Google Scholar 

  2. Zrenner E (2002) Will retinal implants restore vision? Science 295 (5557): 1022–5

    Article  PubMed  CAS  Google Scholar 

  3. Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al (2002) Retinal prosthesis for the blind. Sury Ophthalmol 47 (4): 335–56

    Article  Google Scholar 

  4. Humayun MS,, de Juan EJ, Weiland JD, Dagnelie G, Katona S, Greenberg RJ et al (1999) Pattern electrical stimulation of the human retina. Vision Research 39: 2569–76

    Article  PubMed  CAS  Google Scholar 

  5. Weiland JD, Humayun MS, Dagnelie G, de Juan JE, Jr., Greenberg RJ, Iliff NT (1999) Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 237 (12): 1007–13

    Article  PubMed  CAS  Google Scholar 

  6. Rizzo J, Wyatt J, Loewenstein J, Kelly S (2000) Acute intraocular retinal stimulation in normal and blind humans. ARVO abstracts [532]

    Google Scholar 

  7. Stone JL, Barlow WE, Humayun MS, de Juan EJ, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110(111: 1634–9

    Google Scholar 

  8. Santos A, Humayun MS,, de Juan EJ, Greenburg RJ, Marsh MJ, Klock IB et al (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115 (4): 511–15

    Article  PubMed  CAS  Google Scholar 

  9. Kim S, Sadda S, Pearlman J, Humayun M, de Juan EJ, Melia M, et al (2001) Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Arch Ophthalmol (Submitted )

    Google Scholar 

  10. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, de Juan JE Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40 (9): 2073–81

    PubMed  CAS  Google Scholar 

  11. Margalit E, Fujii G, Lai J, Gupta P, Chen S, Shyu J, et al (2000) Bioadhesives for intraocular use. Retina 20: 469–77

    PubMed  CAS  Google Scholar 

  12. House WF (1976) Cochlear implants. Ann Otol Rhino! Laryngol 85 [Suppl 271 (3Pt2): 1–93

    Google Scholar 

  13. Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 20 (4): 439–49

    Article  PubMed  CAS  Google Scholar 

  14. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, et al (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813 (1): 181–6

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119 (Pt 2): 507–22

    Article  PubMed  Google Scholar 

  16. Butler LD, Stieglitz TL (1993) Contagion in schizophrenia: a critique of Crow and Done (1986). Schizophr Bull 19 (3): 449–54

    PubMed  CAS  Google Scholar 

  17. Blau A, Ziegler C, Heyer M, Endres F, Schwitzgebel G, Matthies T, et al (1997) Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation. Biosens Bioelectron 12 (9–10): 883–92

    Article  PubMed  CAS  Google Scholar 

  18. Thielecke H, Stieglitz T, Beutel H, Matthies T, Ruf HH, Meyer JU (1999) Fast and precise positioning of single cells on planar electrode substrates. IEEE Eng Med Biol Mag 18 (6): 48–52

    Article  PubMed  CAS  Google Scholar 

  19. Rizzo J, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3: 251–62

    Article  Google Scholar 

  20. Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, et al (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors [see comments]. Ophthalmic Res 29 (5): 269–80

    Article  PubMed  CAS  Google Scholar 

  21. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29 (5): 281–9

    Article  PubMed  CAS  Google Scholar 

  22. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225 (1): 13–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene de Juan Jr MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag/Wien

About this chapter

Cite this chapter

de Juan, E., Weiland, J.D., Humayun, M.S., Fujii, G.Y. (2004). Epi-retinal prosthesis. In: Binder, S. (eds) The Macula. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7985-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7985-7_35

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7987-1

  • Online ISBN: 978-3-7091-7985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics