The Macula pp 261-281 | Cite as

Recent trends in ocular drug delivery

  • J.-M. Parel
  • P. J. Milne
  • R. K. Parrish


Modern discovery techniques are leading to an ever increasing numbers of drugs and drug candidates. Together with the deeper understanding of ocular physiological processes and the molecular pathogenesis of disease states, this stimulates potential interest in drug modalities for treatment and control of several ocular conditions. Because of the potency and specificity of newer therapeutic agents, increasing attention must be paid to the delivery schemes clinicians use for the targeting of drugs and pro-drugs to their specific sites of action. An instance of the challenges of this are to be seen in the consideration of peptide and oligonucleotide sequences newly developed from molecular biological fields such as proteomics and gene therapy which may require highly controlled delivery of non-traditional drugs, biomolecules and agents to intended targets at the cell layer and specific cell type level [21] to be both effective and safe for treatment.


Aqueous Humor Ocular Surface Intravitreal Injection Proliferative Vitreoretinopathy Subconjunctival Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoszyk AN, Gottleib JL, Machemer R, Hatchell DL (1993) The effects of intravitreal triamcinolone acetonide on experimental preretinal neovascularization. Graefes Arch Clin Exp Ophthalmol 231: 34–40PubMedCrossRefGoogle Scholar
  2. 2.
    Ambati J, Gragoudas ES, Miller JW, You TT, Miayamoto K, Delori FC, Adamis AP (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41: 1186–91PubMedGoogle Scholar
  3. 3.
    Ambati J, Adamis AP (2002) Transscleral drug delivery to the retina and choriod. Prog Retin Eye Res 21: 145–51PubMedCrossRefGoogle Scholar
  4. 4.
    Arroyo MH, Refojo MF, Araiz JJ, Tolentino FL, Cajita VN, Elner VM (1993) Silicone oil as a delivery vehicle for BCNU in rabbit proliferative vitreoretinopathy. Retina 13: 245–50PubMedCrossRefGoogle Scholar
  5. 5.
    Barza M, Kane A, Baum JL (1981) The difficulty of determining the route of intraocular penetration of gentamicin after subcojunctival injection in the rabbit. Invest Ophthalmol Vis Sci 20: 509–14PubMedGoogle Scholar
  6. 6.
    Barza M, Peckman C, Baum J (1986) Transscleral iontophoresis of cefazolin, tiarcillin and gentamycin in the rabbit. Ophthalmology 93: 133–8PubMedGoogle Scholar
  7. 7.
    Barza M, Peckman C, Baum J (1987) Transscleral iontophoresis of gentamycin in monkeys. Invest Ophthalmol Vis Sci 29: 1033–7Google Scholar
  8. 8.
    Baum J, Peyman GA, Barza M (1982) Intravitreal administration of antibiotic in the treatment of bacterial endophthalmitis III, Consensus. Sury Ophthalmol 26: 204–6Google Scholar
  9. 9.
    Behar-Cohen FF, Parel JM, Pouliquen Y, Thillaye-Goldenberg B, Goureau O, Heydolph S, Courtois Y, De Kozak Y (1997) lontophoresis of dexamethasone in the treatment of endotoxin induced uveitis in rats. Exp Eye Res 65: 533–45Google Scholar
  10. 10.
    Behar-Cohen FF, Salvodelli M, Parel JM, Goureau O, Thillaye-Goldenburg B, Courtois Y, de Kozak Y (1998) Reduction of corneal edema in endotoxin-induced uveitis after application of L-NAME as nitric oxide inhibitor in rats by iontophoresis. Invest Ophthalmol Vis Sci 39: 897–904Google Scholar
  11. 11.
    Behar-Cohen F, DeKozak Y, Voigt M, Parel J-M, Goureau O, Chauvaud D (1999) Ocular Coulomb Controlled lontophoresis ( CCI) of NOS II Antisens oligonucleotides in endotoxininduced-uveitis in rats. ARVO Invest Ophthalmol Vis Sci 40: s869Google Scholar
  12. 12.
    Behar-Cohen F, El Aouni A, Le Rouic JF, Parel J-M, Renard G, Chauvaud D (2001) lontophorèse: revue de la littérature et perspectives. J Fr Ophtalmol 24(3):319–27PubMedGoogle Scholar
  13. 13.
    Behar-Cohen FF, Gautier S, El Aouni A, Chapon P, Parel J-M, Renard G, Chauvaud D (2001) Methylprednisolone concentrations in the vitreous and the serum after pulse therapy. Retina 21: 48–53PubMedCrossRefGoogle Scholar
  14. 14.
    Benita S, Levy MJ (1993) Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physico-chemical characterization. J Pharm Sci 82: 1069PubMedCrossRefGoogle Scholar
  15. 15.
    Bill A (1964) The drainage of albumin from the uvea. Exp Eye Res 3: 179–87PubMedCrossRefGoogle Scholar
  16. 16.
    Bill A (1965) Movement of albumin and dextran through the sclera. Arch Ophthalmol 74: 248–52PubMedCrossRefGoogle Scholar
  17. 17.
    Bill A (1968) Capillary permeability to an extravascular dynamics of myoglobin, albumin and gammaglobulin in the uvea. Acta Physiol Scan 73: 204–19CrossRefGoogle Scholar
  18. 18.
    Boubriak OA, Urban JP, Akhtar S, Meek KM, Bron AJ (2000) The effect of hydration and matrix composition on solute diffusion in rabbit sclera. Exp Eye Res 71: 503–14PubMedCrossRefGoogle Scholar
  19. 19.
    Chapman SA, Ayad S, O’Donoghue E, Bonshek RE (1998) Glycoproteins of trabecular meshwork, cornea and sclera. Eye 12: 440–8PubMedCrossRefGoogle Scholar
  20. 20.
    Chapon P, Voigt M, Gautier S, Behar-Cohen F, O’Grady G, Parel J-M (1999) Intraocular tissues pharmacokinetics of ganciclovir transscleral coulomb controlled iontophoresis in rabbits. ARVO Invest Ophthalmol Vis Sci 40: 5189Google Scholar
  21. 21.
    Chaum E, Hatton MP (2002) Gene therapy for genetic and acquired retinal diseases. Sury Ophthalmol 47 (5): 449–69CrossRefGoogle Scholar
  22. 22.
    Chauvaud D, Behar-Cohen FF, Parel J-M, Renard G (2000) Transscleral iontophoresis of corticosteroids: Phase II Clinical trial. ARVO Invest Ophthalmol Vis Sci 41 (4): 579Google Scholar
  23. 23.
    Chein DS, Homsy JJ, Gluchowski C, Tang-Liu DD (1990) Corneal and conjunctival/sclera) penetration of p-aminoclonidine, AGN 190342, and clonidine in rabbit eyes. Curr Eye Res 9: 1051–9CrossRefGoogle Scholar
  24. 24.
    Church Al, Bara M, Baum J (1992) An improved apparatus for transcleral iontophoresis of gentamicin. Invest Ophthalmol Vis Sci 33: 3543–5PubMedGoogle Scholar
  25. 25.
    Conrad JM, Robinson JR (1980) Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci 69: 875–84PubMedCrossRefGoogle Scholar
  26. 26.
    Deshpande AA, Heller J, Gurny R (1998) Bioerodible polymers for ocular drug delivery. Crit Rev Ther Drug Carrier Syst 15: 381–420PubMedGoogle Scholar
  27. 27.
    Edelhauser HF, Maren TH (1988) Permeability of human cornea and sclera to sulfonamide carbonic anhydrase inhibitors. Arch Ophthalmol 106: 1110–15PubMedCrossRefGoogle Scholar
  28. 28.
    Edwards A, Prausnitz MR (1998) Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J 44: 214–25CrossRefGoogle Scholar
  29. 29.
    Erkin Ef, Gunenc, Oner FH, Gelal A, Erkin Y, Guven H (2001) Penetration of amikacin into aqueous humor of rabbits. Ophthalmologica 215: 299–302PubMedCrossRefGoogle Scholar
  30. 30.
    Friedrich S, Cheng YL, Saville B (1997) Drug distribution in the vitreous humour of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res 16: 663–9PubMedCrossRefGoogle Scholar
  31. 31.
    Frohlich E (2002) Structure and function of blood-tissue barriers. Dtsch Med Wochenschr 12 7: 2629–34CrossRefGoogle Scholar
  32. 32.
    Grossman R, Lee DA (1998) Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology 96: 724–9Google Scholar
  33. 33.
    Gurny R (1981) Preliminary study of prolonged acting drug delivery systems for the treatment of glaucoma. Pharm Acta Helvetica 56: 130–2Google Scholar
  34. 34.
    Halhal M, Renard G, Bejjani RA, Behar-Cohen F (2003) Corneal graft rejection and corticoid iontophoresis: 3 case reports. J Fr Ophtalmol 26 (4): 391–5PubMedGoogle Scholar
  35. 35.
    Harris R (1967) lontophoresis. In: Licht S (ed) Therapeutic electricity and ultraviolet radiation. New Haven, ConnGoogle Scholar
  36. 36.
    Hostyn P, Villain F, Kühne F, Malek N, Parrish RK, Parel J-M (1996) Controlled drug release implant for 5-FU adjuvant therapy in glaucoma. J Fr Ophtalmol 19 (2): 133–9PubMedGoogle Scholar
  37. 37.
    Hughes L, Maurice DM (1984) A fresh look at ophthalmology. Arch Ophthalmol 102: 1825–9PubMedCrossRefGoogle Scholar
  38. 38.
    Keeley FW, Morin JD, Vesely S (1984) Characterization of collagen from normal human sclera. Exp Eye Res 39: 533–42PubMedCrossRefGoogle Scholar
  39. 39.
    Kimura H, Ogura Y, Hashizoe M, Hishiwaki H, Honda Y, Ikada Y (1994) A new vitreal drug delivery system using implantable biodegradable polymeric device. Invest Ophthalmol Vis Sci 35: 2815–19PubMedGoogle Scholar
  40. 40.
    Kimura S, Kobayashi M, Nakamura M, Hirano K, Awaya S, Hoshino T (1995) Immunoelectron microscopic localization of decorin in aged human corneal and sclera) stroma. J Electron Microsc (Tokyo) 44: 445–9Google Scholar
  41. 41.
    Komai Y, Ushiki, T (1991) The three dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32: 2244–58PubMedGoogle Scholar
  42. 42.
    Kralinger MT, Voigt M, Kieselbach GF, Hamasaki D, Parel J-M (2003) In vivo safety of repetitive Coulomb Controlled lontophoresis administered Acetylsalicylic acid. Ophthalmic Research 35: 102–10PubMedCrossRefGoogle Scholar
  43. 43.
    Kralinger MT, Hamasaki D, Kieselbach GF, Voigt M, Parel J-M (2001) Intravitreale Applikation von Azetylsalizylsäure mittels Silikonöltamponade. Spektrum Augenheilkd 15 (5): 194–201CrossRefGoogle Scholar
  44. 44.
    Kralinger MT, Kieselbach GF, Voigt M, Parel J-M (2001) Slow release of Acetylsalicylic acid by intravitreal silicone oil. Retina 21: 513–20PubMedCrossRefGoogle Scholar
  45. 45.
    Kralinger MT, Hamasaki D, Kieselbach GF, Voigt MV, Parel J-M (2001) Intravitreal Acetylsalicylic acid in Silicone oil: Pharmacokinetics and evaluation of its safety by ERG and histology. Graefe’s Arch Clin Exp Ophthalmol 239: 806–16Google Scholar
  46. 46.
    Lam TT, Edward DP, Zhu X, Tso M (1989) Transscleral iontophoresis of dexamethasone. Arch Ophthalmol 107: 1368–74PubMedCrossRefGoogle Scholar
  47. 47.
    Lam TT, Fu J, Chu R, Stojack K, Siew E, Tso MO (1994) Intravitreal delivery of ganciclovir in rabbits by transscleral iontophoresis. J Ocular Pharmacol 10: 571–5CrossRefGoogle Scholar
  48. 48.
    Lang JC (1995) Ocular drug delivery: conventional ocular formulations. Adv Drug Delivery Rev 16: 39–43CrossRefGoogle Scholar
  49. 49.
    Larrosa JM, Veloso AAS, Leong FL, Refojo MF (1997) Antiproliferative effect of intravitreal alphatocopherol and alpha-tocopheryl acid succinate in a rabbit model of PVR. Curr Eye Res 16: 1030–5PubMedCrossRefGoogle Scholar
  50. 50.
    Lee TW, Robinson JR (2001) Drug delivery to the posterior segment of the eye: some insights on the penetration pathways after subconjunctival injection. J Ocul Pharmacol Ther 17: 565–72PubMedCrossRefGoogle Scholar
  51. 51.
    Lesar TS, Fiscella RG (1985) Antimicrobial drug delivery to the eye. Drug Intell Clin Pharm 19: 642–54PubMedGoogle Scholar
  52. 52.
    Lewis H, Kamei M, Skaguchi H, Kaiser P, Zhou T, Schwendeman S (2002) XXIII Club Jules Gonin meeting, Montreux Switzerland 8/31–9/4. Program p 49Google Scholar
  53. 53.
    Lu SX, Anseth KS (1999) Photopolymerization of multilaminated poly ( HEMA) hydrogels for controlled release. J Controlled Release 57: 291–300CrossRefGoogle Scholar
  54. 53a.
    Maurice DM (1986) iontophoresis of fluorescein into the posterior segment of the rabbit eye. Ophthalmology 93:128–32Google Scholar
  55. 54.
    Maurice DM, Ota Y (1978) The kinetics of subconjunctival injections. Jpn J Ophthalmol 22: 95–100Google Scholar
  56. 55.
    Maurice DM, Polgar J (1977) Diffusion across the sclera. Exp Eye Res 25: 577–82PubMedCrossRefGoogle Scholar
  57. 56.
    Meseguer G, Gurny R, Buri P (1994) In vivo evaluation of dosage forms: application of gamma scintigraphy to non-enteral routes of administration. J Drug Targeting 2: 269–88CrossRefGoogle Scholar
  58. 57.
    Mietz H, Diestelhorst M, Rumpf At Theisohn M, Klaus W, Kreigelstein GK (1998) Ocular concentrations of mitomycin C using different delivery devices. Ophthalmologica 212: 3742CrossRefGoogle Scholar
  59. 58.
    Miller SC, Donovan MD (1982) Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm 12: 147–52CrossRefGoogle Scholar
  60. 59.
    Miyamoto H, Ogura Y, Hashizoe M, Kunou N, Honda Y, Ikada Y (1997) Biodegradable sclerai implant for intravitreal controlled release of fluconazole. Curr Eye Res 16: 930–5PubMedCrossRefGoogle Scholar
  61. 60.
    Moses R, Hart W (1987) Adler’s physiology of the eye: clinical applications, 8th edn. St. Louis: MosbyGoogle Scholar
  62. 61.
    Nose I, Parel J-M, Lee W, Cohen F, De Kozak Y, Rowaan C, Paldano A, Jallet V, Söderberg PG, Davis J (1996) Ocular Coulomb Controlled lontophoresis (OCCI). ARVO Invest Ophthalmol Vis Sci 37 (3): 541Google Scholar
  63. 62.
    Oakley DE, Weeks RD, Ellis PP (1976) Corneal distribution of subconjunctival antibiotics. Am J Ophthalmol 81: 307–12PubMedGoogle Scholar
  64. 63.
    Olsen K, Parel J-M, Lee W, Hernandez E (1989) Biodegradable mechanical retinal fixation: a pilot study. Arch Ophthalmol 107: 735–41PubMedCrossRefGoogle Scholar
  65. 64.
    Parel J-M, Gautier S, Jallet V, Franck Villain (2000) Silicone oils: physico-chemical properties. In: SJ Ryan (ed) Surgical retina, 3nd edn, ch 131. St Louis: CV Mosby Co, pp 2173–94Google Scholar
  66. 65.
    Parel J-M, Behar-Cohen F, Davis J, Murray T, Yoo S (2002) Non-invasive topical drug delivery to retina—choroid via Coulomb Controlled lontophoresis. XXIII meeting of the Club Jules Gonin, Montreux Switzerland, 8/31–9/4, Program p 24Google Scholar
  67. 66.
    Park K (ed) (1997) Controlled drug delivery challenges and strategies. Washington DC: ACSGoogle Scholar
  68. 67.
    Perkins SL, Yang CH, Ashton PA, Jaffe GJ (2001) Pharmacokinetics of the silicone filled eye. Retina 21: 10–14PubMedCrossRefGoogle Scholar
  69. 68.
    Robinson JR (1989) Ocular drug delivery mechanisms of corneal drug transport and mucoadhesive delivery systems. S.T.P. Pharm Sci 5: 839–46Google Scholar
  70. 69.
    Rootman J, Ostry A, Gudauskas G (1984) Phramacokinetics and metabolism of 5-fluoruracil following subconjuntival versus intravenous administration. Can J Ophthalmol 19: 187–91PubMedGoogle Scholar
  71. 70.
    Rozier A, Mauzel C, Grove J, Plazzonnet B (1989) Gelrite: a novel ion activated, in situ gelling polymer for ophthalmic vehicles. Effect of bioavailability of timolol. Int J Pharm 57: 163–8Google Scholar
  72. 71.
    Rubsamen PE, Davis PA, Hernandez, et al (1994) Prevention of experimental proliferative vitreoretinopathy with a biodegradable intravitreal implant for the sustained release of fluorouracil. Arch Ophthalmol 112: 407–13PubMedCrossRefGoogle Scholar
  73. 72.
    Rudnick, DE, Noonan JS, Geroski DH, Prausnitz MR, Edelhauser HF (1999) The effect of intraocular pressure on human and rabbit sclera! permeability. Invest Ophthalmol Vis Sci 40: 3054–8PubMedGoogle Scholar
  74. 73.
    Saettone MF, Chetoni P, Torracca MT, Burgalassi S, Giannaccini B (1989) Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid. Int J Pharm 72: 131–9CrossRefGoogle Scholar
  75. 74.
    Sarraf D, Equi RA, Holland GN, Yoshizumi MO, Lee DA (1995) Transscleral iontophoresis of foscarnet. Am J Ophthalmol 115: 748–9Google Scholar
  76. 75.
    Sasaki H, Yamamura K, Tei C, Nishida K, Nakamura J (1995) Ocular permeability of FIT Cdextran with absorption promoter for ocular delivery of peptide drug. J Drug Target 3: 129–35PubMedCrossRefGoogle Scholar
  77. 76.
    Savic R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science Apr 25: 615–18Google Scholar
  78. 77.
    Spector R, Forster R, Rodrigues M, Friedland B, Parel J-M (1984) Improved ocular Natamycin penetration by lontophoresis. ARVO Invest Ophthalmol Vis Sci 25 (3): 187Google Scholar
  79. 78.
    Souied EH, Reid S, Nusinowitz S, Kunimura A, Piriev N, Lerner L, Farber DB (2002) Gene transfer into the mouse retina using iontophoresis. ARVO. Invest Ophthalmol Vis Sci, Program summary book. Abstract #2891Google Scholar
  80. 79.
    Souli M, Kopsinis G, Kavouklis E, Gabriel L, Giamarellou H (2001)Vancomycin levels in human aqueous humor after intravenous and subconjunctival administration. Int J Antimicrob Agents 18: 239–43Google Scholar
  81. 80.
    Thale A, Tillmann B, Roche R (1996) Scanning electron microscopic studies of the collagen architecture of human sclera — normal and pathological findings. Ophthalmologica 210: 137–41PubMedCrossRefGoogle Scholar
  82. 81.
    Tornquist P, Alm A (1986) Carrier-mediated transport of amino-acids through the blood-retinal and the blood-brain barriers. Graefes Arch Clin Exp Ophthalmol 224: 21–5PubMedCrossRefGoogle Scholar
  83. 82.
    Trier K, Olsen EB, Kobayashi T, Ribel-Madsen SM (1999) Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide or L-ornithine. Br J Ophthalmol 83: 1370–5PubMedCrossRefGoogle Scholar
  84. 83.
    Uhrich K, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99: 3181–98PubMedCrossRefGoogle Scholar
  85. 84.
    Unlu N, Robinson JR (1998) Sclera! permeability to hydrocortisone and mannitol in the albino rabbit eye. J Ocul Pharmacol Ther (1998) 14: 273–81PubMedCrossRefGoogle Scholar
  86. 85.
    Vandamme ThF (2002) Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retinal Eye Res 21: 15–34CrossRefGoogle Scholar
  87. 86.
    Van Ooteghem (1993) Formulation of ophthalmic solutions and suspensions. Problems and advantages. In: Edman P (ed) Biopharmaceutics of ocular drug delivery. pp 27–42Google Scholar
  88. 87.
    Veloso AMS, Kadrmas EF, Larrosa JM, Sandberg MA, Tolentino FL, Refojo MF (1997) 13-cisRetinoic acid in silicone-fluorosilicone copolymer oil in a rabbit model of proliferative vitreoretinopathy. Exp Eye Res 65: 425–34Google Scholar
  89. 88.
    Vert M, Mauduit J, Li SM (1994) Biodegradation of PLA/GA polymers — increasing complexity. Biomaterials 15: 1209–13PubMedCrossRefGoogle Scholar
  90. 89.
    Voigt M, Kralinger M, Kieselbach G, Chapon P, Hayden B, Anagoste S, Parel J-M (2002) Ocular Aspirin distribution: a comparison of intravenous, topical and Coulomb controlled iontophoresis administration. Invest Ophthalmol Vis Sci 43: 3299–306PubMedGoogle Scholar
  91. 90.
    von Sallmann L (1942) Sulfadiazene iontophporesis in pyrocyaneus infection of rabbit cornea. Am J Ophthalmol 25: 1292–300Google Scholar
  92. 91.
    Weijtens O, Ferron El, Schoemaker RC, Cohen AF, Lentjes EG, Romijn FP, van Meurs JC (1999) High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol 128: 192–7PubMedCrossRefGoogle Scholar
  93. 92.
    Yoo SH, Dursun D, Dubovy S, Miller D, Alfonso EC, Forster RK, Behar-Cohen F, Parel J-M (2002) lontophoresis for the treatment of Paecilomyces keratitis. Cornea 21: 131–2Google Scholar
  94. 93.
    Yoshizumi MO, Dessouki A, Lee DA, Lee G (1997) Determination of ocular toxicity in multiple applications of foscarnet. J Ocular Pharmacol Ther 13: 526–36CrossRefGoogle Scholar
  95. 94.
    Yang CS, Khawly JA, Hainsworth DP, Chen SN, Ashton P, Guo H, Jaffe GJ (1998) An intravitreal sustained-release triamcinolone and 5-fluoruracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 116: 69–77PubMedGoogle Scholar
  96. 95.
    Yasukawa T, Kimura H, Tabata Y, Miyamoto H, Honda Y, Ogura Y (2002) Sustained release of cis-hydroxyproline in the treatment of proliferative vitreoretinopathy in rabbits. Graefes Arch Clin Exp Ophthalmol 240: 672–8PubMedCrossRefGoogle Scholar
  97. 96.
    Zivojnovic R, Mertens DAE, Peperkamp E (1982) Das flüssige Silikon in der Amotiochirurgie II. Berichte über 280 Fälle weitere Entwicklung der Technik. Klin Monatsbl Augenheilkd 181: 444–52PubMedCrossRefGoogle Scholar
  98. 97.
    Zhou T, Lewis H, Foster RE, Schwendeman SP (1998) Development of a multiple-drug delivery implant for proliferative vitreoretinopathy. J Control Release 55: 281–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2004

Authors and Affiliations

  1. 1.Ophthalmic Biophysics Center, Bascom Palmer Eye InstituteUniversity of Miami School of MedicineMiamiUSA
  2. 2.Paris Hôtel-Dieu HospitalParisFrance
  3. 3.Department of Ophthalmology, Centre Hospitalier Universitaire Sart-TilmanUniversity of LiègeLiègeBelgium
  4. 4.Ophthalmic Biophysics Center, Bascom Palmer Eye InstituteUniversity of Miami School of MedicineMiamiUSA
  5. 5.Department of Atmospheric ChemistryUniversity of Miami Rosenstiel School of Marine and Atmospheric ScienceKey BiscayneUSA
  6. 6.Bascom Palmer Eye InstituteUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations