Advertisement

Contractility

  • Nikolai Kolev
  • Günter Huemer
  • Michael Zimpfer

Abstract

When preload and afterload are kept constant, stroke volume is dependent on contractility, or the inotropic state of the myocardium.1 The inotropic state of the myocardium is an intrinsic property that reflects the strength of the muscle fiber, which in turn is influenced by the neurohormonal (especially cardiac sympathetic nerves) and metabolic (pH, Ca++, etc.) milieu. Traditionally, a change in contractility in the intact heart can be defined as an alteration in overall cardiac performance that occurs independently of alterations in preload, afterload or heart rate. Because of the latter confounding variables, it has been difficult to assess left ventricular contractility in humans and particularly in the acute change of settings in surgery.2–3

Keywords

Cardiac Output Aortic Valve Main Pulmonary Artery Left Ventricular Outflow Tract Left Ventricular Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braunwald E, Sonnenblick EH, Ross J Jr. Mechanism of cardiac contraction and relaxation. In: Braunwald E, ed, Heart Disease. 4th ed. WB Saunders, Philadelphia, London, pp 351–392, 1992Google Scholar
  2. 2.
    O’Kelly BF, Tubau JF, Knight AA, London MJ, Verrier ED, Mangano DT. Measurement of left ventricular contractility using transesophageal echocardiography in patients undergoing coronary artery bypass grafting. Am Heart J 122: 1041–1049, 1991PubMedCrossRefGoogle Scholar
  3. 3.
    Mulier JP, Vouters PF, Van Aken H, Vermaut G, Vandermeersch E. Cardiodynamic effects of propofol in comparison with thiopental: Assessment with a transesophageal echocardiographic approach. Anesth Analg 72: 28–35, 1991PubMedCrossRefGoogle Scholar
  4. 4.
    Heinrich H, Fontaine L, Fosel T, Spilker D, Winter H, Ahnefeld FW. Vergleichende echocardiographische Untersuchungen zur negativen Inotropien von Halothan, En- fluran and Isofluran. Anaethesist 35: 456–472, 1986Google Scholar
  5. 5.
    Kikura M, Ikeda T, Kazama T, Ikeda K. Effect of prostaglandin Et on myocardial contractility in dogs anesthetized with halothane: Load independent and noninvasive assessment using transesophageal echocardiography. J Cardiothorac Vase Anesth 6: 586–592, 1992CrossRefGoogle Scholar
  6. 6.
    Kikura M, Ikeda K. Comparison of effects of sevoflurane-nitrous oxide and enflurane- nitrous oxide on myocardial contractility in humans: Load-independent and noninvasive assessment with transesophageal echocardiography. Anesthesiology 79: 235–243, 1993PubMedCrossRefGoogle Scholar
  7. 7.
    Goertz AW, Seeling W, Heinrich H, Lindner KH, Schmer U. Influence of high thoracic epidural anesthesia on left ventricular contractility assessed using the end-systolic pressure-length relationship. Acta Anesthesiol Scand 37: 38–44, 1993CrossRefGoogle Scholar
  8. 8.
    Huemer G, Kolev N, Kurz A, Zimpfer M. Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echocardiography. Chest 106: 67–73, 1994PubMedCrossRefGoogle Scholar
  9. 9.
    Kolev N, Usunov G, Vlasakov V. Hemodynamic and pharmacologic influences on the left ventricular echo dimension-pressure loop in dogs. J Cardiography (Tokyo) 14: 537–542, 1984Google Scholar
  10. 10.
    Borow K. Assessment of left ventricular performance. In: Oldershow T, ed. Textbook of adult and pediatric two-dimensional and Doppler echocardiography. Blackwell, London, pp 97–109, 1989Google Scholar
  11. 11.
    Erbel R. Principles of global left ventricular function analysis. In: Roelandt JRT, Sutherland GR, Iliceto S, Linker DT, eds. Cardiac Ultrasound. Churchill Livingstone, Edinburgh, London, pp 219–231, 1993Google Scholar
  12. 12.
    Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–292, 1975PubMedCrossRefGoogle Scholar
  13. 13.
    Schuster AH, Nanda NC. Doppler echocardiography in cardiac pacing. PACE 5: 607–609, 1982PubMedCrossRefGoogle Scholar
  14. 14.
    Foote GA, Schabel SI, Hodges M. Pulmonary complications of the flow-directed balloon-tipped catheter. N Engl J Med 290: 927–931, 1974PubMedCrossRefGoogle Scholar
  15. 15.
    Kolev N, Lazarova M, Lengyel M. Doppler determination of right ventricular output and diastolic filling. J Cardiogr (Tokyo) 16: 569–667, 1986Google Scholar
  16. 16.
    Schuster AH, Nanda NC. Doppler evaluation of cardiac output. In: Nanda NC, ed. Doppler echocardiography. 2nd ed, Lea & Febiger, Philadelphia, London, pp 103–106, 1993Google Scholar
  17. 17.
    Vuillle C, Weyman AE. Left ventricle I: General considerations, assessment of chamber size and function. In: Weyman, ed. Principles and practice of echocardiography, 2nd ed. Lea & Febiger, Philadelphia, Baltimore, London, p 605, 1994Google Scholar
  18. 18.
    Kolev N, Huemer G, Steiner W, Leitner K. On-line assessment of left ventricular volumes and ejection fraction by automated boundary detection and backscatter imaging. J Cardiovasc Diag Proc (NY) 11: 141–145, 1993Google Scholar
  19. 19.
    Assmann PE. Quantitative echocardiographic analysis of global and regional left ventricular function: a problem revisited. J Am Soc Echocardiog 3: 478 - 482, 1990Google Scholar
  20. 20.
    Clements FM, Harpole DH, Quill T, Jones RH, McCann RL. Estimation of left ventricular volume and ejection fraction by two-dimensional echocardiography: Comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth 64: 331–336, 1990PubMedCrossRefGoogle Scholar
  21. 21.
    Smith MD. Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 19: 1213–1219, 1992PubMedCrossRefGoogle Scholar
  22. 22.
    Katz WE, Gasior TA, Quinland JJ, Gorscan III. Transgastric continuous wave Doppler to determine cardiac output. Am J Cardiol 71: 853–857, 1993PubMedCrossRefGoogle Scholar
  23. 23.
    Darmon PL, Hillel Z, Mogtabar A, Mindich B, Thys D. Cardiac output by transesophageal echocardiography using continuous wave Doppler across the aortic valve. Anesthesiology 80: 796–805, 1994PubMedCrossRefGoogle Scholar
  24. 24.
    Gorcsan J II, Diana P, Ball BA, Hattler BG. Intraoperative determination of cardiac output by transesophageal continuous wave Doppler. Am Heart J 123: 171–176, 1992PubMedCrossRefGoogle Scholar
  25. 25.
    Muhiudeen IA, Kuecherer HF, Lee E, Cahalan MK, Schieller NB. Intraoperative estimation of cardiac output by transesophageal pulsed Doppler echocardiography. Anesthesiology 79: 9–14, 1991CrossRefGoogle Scholar
  26. 25a.
    Akamatsu S, Kondo Y, Ueda N, Takeda N, Takeda T, Dohi S. Continuos cardiac output measurements with newly developed pulmonary artery Doppler catheter (Abstr). Anesthesiology 81 (Suppl): A515, 1994Google Scholar
  27. 26.
    Kolev N, Zimpfer M. Impact of ischemia on diastolic function: Clinical relevance and recent Doppler echocardiographic results. Eur J Anaesth (in press), 1995Google Scholar
  28. 27.
    Castor G, Klocke K, Stoll M, Helms J, Niedermark I. Simultaneous measurements of cardiac output by thermodilution, thoracic electrical impedance and Doppler ultrasound. Br J Anaesth 72: 133–138, 1994PubMedCrossRefGoogle Scholar
  29. 28.
    Fisher DC, Sahn DJ, Friedman MJ. The effect of variations on pulsed Doppler sampling site on calculations of cardiac output. An experimental study in open-chest dogs. Circulation 67: 370–379, 1983PubMedCrossRefGoogle Scholar
  30. 29.
    Schuster S, Erbel R, Weilemann LS, Lu W, Wellek S. Monitoring during PEEP ventilation in patients with severe left ventricular failure using transesophageal echocardiography. In: Erbel R, ed. Transesophageal echocardiography. Springer, Berlin, Heidelberg, pp 206–217, 1989CrossRefGoogle Scholar
  31. 30.
    Kumar A, Minagoe S, Thangathurai D. Noninvasive measurement of cardiac output during surgery using a new continuous wave Doppler esophageal probe. Am J Cardiol 64: 793–782, 1989PubMedCrossRefGoogle Scholar
  32. 31.
    Haude M, Gerber T, Brennecke R, Erbel R, Meyer J. Continuous and noninvasive monitoring of cardiac output by transesophageal Doppler ultrasound. In: Erbel R, ed. Transesophageal echocardiography. Springer, Berlin, Heidelberg, pp 260–2266, 1989CrossRefGoogle Scholar
  33. 32.
    Kumar A, Minagoe, S, Thangathurai D, Mikhali M, Novia D, Vilijoen JF, Rachim- toola SH, Chandraratna PAN. Noninvasive measurement of cardiac output during surgery using a new continuous wave Doppler esophageal probe. Am J Cardiol 64: 739–798, 1989CrossRefGoogle Scholar
  34. 33.
    Hoit BD, Rash wan M, Watt C, Sahn D, Bharvgrara V. Calculating cardiac output from transmitral volume flow using Doppler and M-mode echocardiography. Am J Cardiol 62: 131–135, 1988PubMedCrossRefGoogle Scholar
  35. 34.
    Smith JS, Cahalan MK, Benefield DJ, Byrd BF, Lurz FW, Shapiro WA, Roizen MF, Pouchard MF, Schieller NB. Intraoperative detection of myocardial ischemia in high risk patients. Electrocardiography versus two-dimensional transesophageal echocardiography. Circulation 72: 1015–1021, 1985PubMedCrossRefGoogle Scholar
  36. 35.
    Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology 74: 172–183, 1991PubMedCrossRefGoogle Scholar
  37. 36.
    de Bruijn NP, Clements FM, Kisslo JA. Intraoperative transesophageal color flow mapping: Initial experience. Anesth Analg 66: 386–390, 1987PubMedGoogle Scholar
  38. 37.
    Mangano DT. Preoperative assessment. In: Kaplan JA, ed. Cardiac Anesthesia. 2nd ed. WB Saunders, Philadelphia, pp 341–392, 1987Google Scholar
  39. 38.
    Baron JF, Coriat P, Mundler TM, Bousseau D, Viars P. Left ventricular global and regional function during lumbar epidural anesthesia in patients with and without angina pectoris. Influence of volume loading. Anesthesiology 66: 621–627, 1987PubMedCrossRefGoogle Scholar
  40. 39.
    Thys DM, Kaplan JA. Cardiovascular physiology. In: Miller RD, ed. Anesthesia. 3rd ed. Churchill Livingstone, New York, pp 551–583, 1990Google Scholar
  41. 40.
    Grein C, Roewer N, Laux G, Schulte J. Perioperative assessment of myocardial contractility by transesophageal echocardiography (Abstr). Anesthesiology 79: A547, 1993Google Scholar
  42. 41.
    Connelly GP, Arkoff H, Dempsey A, Gillespie D. Left ventricular diastolic dysfunction associated with infrarenal aortic crossclamp (Abstr). Anesthesiology 79: A86, 1993Google Scholar
  43. 42.
    Fontes ML, Leung J, Mangano DT, SPI Study Group. Should transesophageal echocardiography monitoring be used routinely in the cardiac intensive care unit (Abstr)? Anesthesiology 79: A288, 1993Google Scholar
  44. 43.
    Ryan T, Burwash I, Graham M, Otto C, Hofer B, Verier E, Spiess B. Is agreement of transesophageal echocardiographic fractional area change and radionuclide ejection fraction dependent on ventricular function (Abstr). Anesthesiology 79: A67, 1993Google Scholar
  45. 44.
    Berguist BD, Lemon KW, Bellows WH, Leung JM, SPI Study Group. Real-time determination of ejection fraction by transesophageal echocardiography: How accurate are ‘eyeball’ estimates (Abstr)? Anesthesiology 79: A69, 1993Google Scholar
  46. 45.
    Stamm RB, Carabello BA, Mayers DL, Martin NP. Two-dimensional echocardiographic measurement of left ventricular ejection fraction: prospective analysis of what constitutes an adequate determination. Am Heart J 104–109, 1982Google Scholar
  47. 46.
    Erbel R, Krebs W, Henn G, Schweizer P, Richter HA, Meyer J, EfFert S. Comparison of single-plane and biplane volume determination by two-dimensional echocardiography. Eur Heart J 3: 469–574, 1982PubMedGoogle Scholar
  48. 47.
    Amoore JH, Santamore WP. Model studies of the contribution of ventricular interdependence of the transient changes in ventricular function with respiratory effort. Cardiovasc Res 23: 683–687, 1989PubMedCrossRefGoogle Scholar
  49. 48.
    Antani J A, Wayne HH, Kuzman WJ. Ejection phase indexes by invasive and noninvasive methods: an apexcardiographic, echocardiographic and ventriculographic study. Am J Cardiol 43: 239–243, 1979PubMedCrossRefGoogle Scholar
  50. 49.
    Kolev N. Evaluation of contractile state of the left ventricle from the peak of the first derivative of the apex cardiogram. Am Heart J 100: 600–604, 1980PubMedCrossRefGoogle Scholar
  51. 50.
    Chen C, Rodriguez L, Cuerrero L, Marshall S, Levine RA, Weyman AE, Thomas JD. Noninvasive estimation of instantaneous first derivative of left ventricular pressure using continuous wave Doppler echocardiography. Circulation 83: 2101–2110, 1991PubMedGoogle Scholar
  52. 51.
    Bove AA, Santamore WP. Mechanical performance of the heart: In: Giulian ER, Fuster V, Gersh BJ, McCoon MD, McCoon DC, eds. Cardiology. Fundamental and practice, 2nd ed. Mosby, St Louis, Baltimore, 1987, pp 154–157.Google Scholar
  53. 52.
    Kolev N, Zimpfer M, Black AM. Ventricular function curves revisited. Eur J Anaesth (in press), 1995Google Scholar
  54. 53.
    Shuga H, Sagawa K. Determinants of instantaneous pressure in canine left ventricle: time and volume specification. Circul Res 46: 256–259, 1980Google Scholar
  55. 54.
    Huemer G, Kolev N, Zimpfer M. Echocardiographic assessment of left ventricular systolic function - the anesthesiologist’s view. Eur J Anaesth 11: 437–441, 1994Google Scholar
  56. 55.
    Goertz AW, Lindner KH, Seefelder C, Schirmer U, Beyer M, Georgieff M. Effect of phenylephrine bolus administration on global left ventricular function in patients with coronary artery disease and patients with valvular aortic stenosis. Anesthesiology 78: 834–841, 1993PubMedCrossRefGoogle Scholar
  57. 56.
    Gorcsan J, Denault A, Gasior TA, Mandarino WA, Kancel MJ, Deneault LG, Hattler BG, Pinsky MR. Rapid estimation of left ventricular contractility from end-systolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology 81: 553–562, 1994PubMedCrossRefGoogle Scholar
  58. 57.
    Parker MM, Ognibene FP, Parrillo JE Peak-systolic pressure/end-systolic volume ratio, a load-independent measure of ventricular function, is reversely decreased in human septic shock. Crit Care Med 22: 1955–1959, 1994PubMedGoogle Scholar
  59. 58.
    Carabello BA, Spann JF. The use and limitations of end-systolic indexes of left ventricular function. Circulation 69: 1058–1064, 1984PubMedCrossRefGoogle Scholar
  60. 59.
    Zimpfer M, Kolev N. Positive inotropic and vasoactive drugs: their therapeutic use in perioperative heart failure. Int J Anaesth (in press) 1994Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Nikolai Kolev
    • 1
  • Günter Huemer
    • 1
  • Michael Zimpfer
    • 2
  1. 1.Department of Anesthesiology and General Intensive CareUniversity of ViennaAustria
  2. 2.University of ViennaAustria

Personalised recommendations