Skip to main content

Abstract

Afterload can be thought of as the tension acting on the fibers in the ventricular wall during ejection or as the impedance to ejection.1 Although it is influenced importantly by the arterial pressure, it is not synonymous with peripheral arterial pressure, peripheral vascular tone, or systemic vascular resistance. Afterload is best defined as left ventricular wall stress during ejection according to La Place’s law:2

$${\text{Wall stress = PR/2h,}}$$
(1)

where P is the intracavitary pressure, R is the radius of curvature, and h is the wall thickness. Thus, wall stress is directly related to chamber dimension, and inversely related to wall thickness. While arterial pressure is related to the product cardiac output and systemic vascular resistance, afterload (wall stress) is a function of ventricular size and arterial pressure. Fig. 5.1. illustrates the great difference between wall stress, i.e., afterload, and systolic ventricular pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E, Sonnenblick EH, Ross J Jr. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, ed, Heart disease. 4th ed. WB Saunders, Philadelphia, pp 351–418, 1992

    Google Scholar 

  2. Goertz AW, Lindner KH, Seefeld C, Schirmer U, Beyer M, Georgieff M. Effect of phenylephrine bolus administration on global left ventricular function in patients with coronary artery disease and patients with valvular aortic stenosis. Anesthesiology 78: 834–841, 1993

    Article  PubMed  CAS  Google Scholar 

  3. Kaplan J A. Cardiac Anesthesia. 3rd ed. Grune and Stratton, New York, London, pp 1178, 1991

    Google Scholar 

  4. Kikura M, Shanewise JS, Levy JH. Intraoperative assessment of myocardial function. Curr Opin Anesth 4: 42–52, 1993

    Google Scholar 

  5. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56: 56–64, 1975

    Article  PubMed  CAS  Google Scholar 

  6. Lang LM, Briller RA, Neumann A, Borow KM. Assessment of afterload. In: Kreber RE, ed, Echocardiography in coronary artery disease. Future, Mount Kiosk, pp 224–225, 1988

    Google Scholar 

  7. Quinones MA, Mokotoff DM, Nouri S, Winters WL, Miller RR. Noninvasive quantifi-cation of left ventricular wall stress. Validation of the method and application to assessment of chronic pressure overload. Am J Cardiol 45: 782–790, 1980

    Article  PubMed  CAS  Google Scholar 

  8. Huemer G, Kolev N, Kurz A, Zimpfer M. Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echocardiography. Chest 106: 67–73, 1994

    Article  PubMed  CAS  Google Scholar 

  9. Golan SD, Borow KM, Neumann A. Effects of loading conditions and contractile state (methoxamine and dobutamine) on left ventricular early diastolic function in normal subjects. Am J Cardiol 55: 790–796, 1985

    Article  Google Scholar 

  10. Reichek N, Wilson J, St J Sutton M, Plappert TA, Goldberg S, Hirshfeld JW. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65: 99–108, 1982

    Article  PubMed  CAS  Google Scholar 

  11. Kikura M, Ikeda T, Kazman T, Ikeda K. Effect of prostaglandin Ej on myocardial contractility in dogs anesthetized with halothane: Load-independent and noninvasive assessment using transesophageal echocardiography. J Cardiothorac Vase Anesth 6: 586–592, 1992

    Article  CAS  Google Scholar 

  12. Kikura M, Ikeda K. Comparison of effects of sevoflurane-nitrous oxide and enflurane- nitrous oxide on myocardial contractility in humans: load-independent and noninvasive assessment with transesophageal echocardiography. Anesthesiology 79: 235–243, 1993

    Article  PubMed  CAS  Google Scholar 

  13. Douglas PS. Comparison of echocardiographic methods for measurement of left ventricular shortening and wall stress. J Am Coll Cardiol 9: 945–949, 1987

    Article  PubMed  CAS  Google Scholar 

  14. Smith JS, Benefiel DJ, Beaupre PN, Sohn YJ, Lurz FW, Bird B, Bouchard A, Schiller NB, Cahalan MC, Roizen MF. Effects of phenylephrine on myocardial performance during carotid endarterectomy (Abstr). Anesthesiology 61: A56, 1984

    Article  Google Scholar 

  15. O’Kelly BF, Tubau JF, Knight AA, London MJ, Verrier ED, Mangano DT. Measurement of left ventricular contractility using transesophageal echocardiography in patients undergoing coronary artery bypass grafting. Am Heart J 122: 1041–1048, 1991

    Article  PubMed  Google Scholar 

  16. Cunningham AJ, Turner J, Grosso L, Rosenbaum S, Rafferty T. Transesophageal assessment of hemodynamic function during laparoscopic cholecystectomy (Abstr). Anesth Analg 76: S64, 1993

    Article  Google Scholar 

  17. Colan SD, Borow KM, Neumann A. The left ventricular end-systolic wall stress- velocity of the fiber shortening relation: A load independent index of myocardial contractility. J Am Coll Cardiol 4: 715–719, 1984

    Article  PubMed  CAS  Google Scholar 

  18. Colan SD, Borow KM, Neumann A. Use of the calibrated pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. Am Heart J 109: 1306–1310, 1985

    Article  PubMed  CAS  Google Scholar 

  19. Janz RF. Estimation of local myocardial stress. Am J Physiol 242: H875, 1982

    PubMed  CAS  Google Scholar 

  20. Kolev N, Huemer G, Ihra G, Spiss CS, Zimpfer M. Assessment of afterload in case of regional systolic abnormalities. Int J Anaesth (in press), 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kolev, N., Huemer, G., Zimpfer, M. (1995). Assessment of afterload. In: Transesophageal Echocardiography. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7676-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7676-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82650-8

  • Online ISBN: 978-3-7091-7676-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics