On-line and off-line determinations of ventricular preloads and volumes

  • Nikolai Kolev
  • Günter Huemer
  • Michael Zimpfer


Before one can understand the clinical utility of TEE entirely it is necessary to become familiar with the applications and limitations of certain principles of cardiology. To begin with, it is important to differentiate between overall cardiac performance and myocardial contractility. Overall cardiac performance reflects the interaction of the heart, blood volume and blood vessels. These component parts together determine the extent of left ventricular fiber shortening during systole, the magnitude of ventricular wall thickness and the size of the left ventricle. Impaired overall cardiac performance can result from abnormal loading conditions (changes in blood volumes or blood pressures). These factors modify traditional indices of left ventricular function such as ejection fraction, fractional shortening, stroke volume and cardiac output. In contrast to overall cardiac performance, contractility, or inotropic state, is an intrinsic property of the myocardial muscle that leads to force generation: it can be depressed by acute ischemia, acidosis, and cardiac toxins (including medication). Overall cardiac performance reflects the interplay of preload, afterload, contractility and heart rate.


Pulmonary Capillary Wedge Pressure Left Ventricular Volume Constrictive Pericarditis Pulmonary Artery Occlusion Pressure Left Ventricular Preload 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braunwald E, Sonnenblick EH, Ross J Jr. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, ed. Heart Disease, 4th ed.WB Saunders, Philadelphia, pp 379–391, 1992Google Scholar
  2. 2.
    Guyton AC. Textbook of medical physiology. 8th ed, WB Saunders, Philadelphia, p 227, 1991Google Scholar
  3. 3.
    Sheferd JT, Vanhoutte PM. Veins and their control. WB Saunders, Philadelphia, p 269, 1987Google Scholar
  4. 4.
    Huemer G, Kolev N, Kurz A, Zimpfer M. Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echo-cardiography. Chest 106: 67–73, 1994PubMedCrossRefGoogle Scholar
  5. 5.
    Hansen RM, Viquerat CE, Matthay MA, Wiener-Kronish JP, DeMarko T, Bahtta S, Marks JD, Botwinick EH, Chatterjee K. Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64: 764–770, 1986PubMedCrossRefGoogle Scholar
  6. 6.
    Cheatham ML, Chang MC, Eddy VA, Safcsak K, Nelson LD. Right ventricular end- diastolic volume index and pulmonary artery occlusion pressure vs cardiac index in patients on positive end-expiratory pressure (Abstr). Crit Care Med 22: A98, 1994CrossRefGoogle Scholar
  7. 7.
    Godje O, Schwab R, Zimmermann G, Blumel G, Reihart B, Pfeiffer U. Discrepancy between left ventricular enddiastolic pressure and pulmonary wedge pressure during mechanical ventilation (Abstr). Crit Care Med 22: A100, 1994Google Scholar
  8. 8.
    Van Aken H, Vandermeersch E. Reliability of PCWP as an index for left ventricular preload. Br J Anesth 60 [Suppl 1]: 85S–89S, 1988Google Scholar
  9. 9.
    Kolev N, Zimpfer M. Impact of myocardial ischemia on diastolic function: Clinical relevance and recent Doppler echocardiographic insights. Eur J Anaesth 11 (in press), 1994Google Scholar
  10. 10.
    Kolev N, Uzunov G, Vlaskov V. Hemodynamic and pharmacologic influences on the left ventricular echo dimension-pressure loops in dogs. J Cardiography (Tokyo) 14: 537–542, 1984Google Scholar
  11. 11.
    De Bruijn NP, Clements FM. Transesophageal echocardiography. Martinus Nijhoff, Boston, pp 94–97, 1987Google Scholar
  12. 12.
    Thys DM, Hillel Z, Goldman ME, Mindich BP, Kaplan JA. A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634, 1987PubMedCrossRefGoogle Scholar
  13. 13.
    Reich DL, Konstandt SN, Abrams HP, Buseck J. Intraoperative transesophageal echocardiography for detection of cardiac preload changes induced by transfusion and phlebotomy in pediatric patients. Anesthesiology 79: 10–15, 1993PubMedCrossRefGoogle Scholar
  14. 14.
    Leung JM, Chan FW, Mangano DT. Transesophageal echocardiography: Prediction of intraoperative hypovolemia (Abstr). Anesth Analg 70: S263, 1990CrossRefGoogle Scholar
  15. 15.
    Erbel R. Principles of global left ventricular function analysis. In: Roelandt JRTC, Sutherland GR, Iliceto S, Linker DT, eds. Cardiac ultrasound. Churchill Livinstone, Edinburgh, London, pp 219–231, 1993Google Scholar
  16. 16.
    Borow K. Integrated approach to the noninvasive assessment of left ventricular systolic and diastolic performance. In: St John Sutton M, Oldershaw PJ, eds. Textbook of adult and pediatric echocardiography and Doppler. Blackwell, Boston, pp 97–115, 1989Google Scholar
  17. 17.
    Cahalan MK, Lurz FC, Schiller NB. Transesophageal two-dimensional echocardiographic evaluation of anaesthetic effects on left ventricular function. Br J Anaesth 60: 99S–106S, 1988PubMedGoogle Scholar
  18. 18.
    van Daele MERM, Roelamdt JRTC. Intraoperative monitoring. In: Sutherland GR, Roelandt JRTC, Fraser A, Anderson RH, eds. Transesophageal echocardiography in clinical practice. Gower London, pp 12.7–12. 16, 1991Google Scholar
  19. 19.
    Clements FM, de Bruijn NP. Perioperative evaluation of regional wall motion by transesophageal two-dimensional echocardiography. Anesth Analg 66: 249–261, 1987PubMedCrossRefGoogle Scholar
  20. 20.
    Takahashi M, Sasayama S, Kavai C, Kotoura H. Contractile performance of the hyper- trophied ventricle in patients with systemic hypertension. Circulation 62: 116–126, 1980PubMedGoogle Scholar
  21. 21.
    Kolev N, Huemer G, Steiner W, Leitner K. On-line assessment of left ventricular volumes and ejection fraction by automatic boundary detection and backscatter ultrasound image. J Cardiovasc Diag Proc (NY) 11: 141–145, 1993Google Scholar
  22. 22.
    Kikura M, Shanewise JS, Levy JH. Intraoperative assessment of myocardial function. Curr Opin Anesth 7: 42–52, 1994CrossRefGoogle Scholar
  23. 23.
    Fontes ML, Leung J, Mangano DT, SPI Research Group. Should transesophageal echocardiography monitoring be used routinely in the cardiac intensive care unit ? (Abstr)Anesthesiology 79: A288, 1993Google Scholar
  24. 24.
    Clements FM, Harpole DH, Quill T, Jones RH, McCann RL. Estimation of left ventricular volumes and ejection fraction by two-dimensional echocardiography: Comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth 64: 331–336, 1990PubMedCrossRefGoogle Scholar
  25. 25.
    Greim C, Roewer N, Laux G, Schulte J. Perioperative assessment of myocardial contractility by transesophageal echocardiography (Abstr). Anesthesiology 79: A547, 1993Google Scholar
  26. 26.
    Cheung AT, Savino JS, Weiss SJ. Echocardiographic and hemodynamic determinations of left ventricular preload during graded hypovolemia (Abstr). Anesthesiology 79: A83, 1993CrossRefGoogle Scholar
  27. 27.
    Stanley TE. Quantitative echocardiography. In: de Bruijn NP, Clements FM, eds. Intraoperative use of echocardiography. Lippincott, Philadelphia, pp 59–73, 1991Google Scholar
  28. 28.
    Wyatt HL, Haensechen RV, Meerbaum S. Assessment of quantitative methods for two- dimensional echocardiography. Am J Cardiol 52: 396–401, 1983PubMedCrossRefGoogle Scholar
  29. 29.
    Cahalan MK, Ionescu P, Melton HE, Adler S, Kee LL, Schiller NB. Automated analysis of intraoperative transesophageal echocardiograms. Anesthesiology 78: 477–485, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Perez JE, Waggoner AD, Barzilai B, Melton HJ, Miller JG, Sobel BE. On-line assessment of ventricular function by automatic boundary detection and ultrasonic bacckscatter imaging. J Am Coll Cardiol 19: 313–320, 1992PubMedCrossRefGoogle Scholar
  31. 31.
    Duft S, Greim C, Roewr N, Laux G, Schulte J. Echocardiographic assessment of fractional area change by halothane: automatic vs manual quantification (Abstr). Anesth Analg 78: SI00, 1994Google Scholar
  32. 32.
    Melton HJ, Collins SM, Skorton DJ. Automatic real-time endocardial edge detection in two-dimensional echocardiography. Ultrasound Imaging 5: 300–307, 1993Google Scholar
  33. 33.
    Cahalan MK, Weiskopf RB, Egger II EI, Yasuda N, Ionescu P, Rampil IJ, Lockhart SH, Freire B, Peterson NA. Hemodynamic effect of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 73: 157–164, 1991PubMedCrossRefGoogle Scholar
  34. 34.
    Geiser EA, Oliver LH, Gardin JM, Kreber RE, Parisi AF, Reichek N, Werner JA, Weyman AE. Clinical validation of an edge detection algorithm for two-dimensional echocardiographic short axis images. J Am Soc Echocardiogr 1: 410–421, 1988PubMedGoogle Scholar
  35. 35.
    Geiser EA, Conetti DA, Limacher MC, Stockton VO, Oliver LH, Jones B. A second generation computer assisted edge detection algorithm for short axis two-dimensional echocardiography. J Am Soc Echocardiogr 3: 79–90, 1990PubMedGoogle Scholar
  36. 36.
    Markus RH, Bednarz J, Coulden R, Shroff S, Lipton M, Lang RM. Ultrasonic backsscatter system for automated on-line endocardial boundary detection: evaluation by ultrafast computed tomography. J Am Coll Cardiol 22: 839 - 847, 1993CrossRefGoogle Scholar
  37. 37.
    Lindower PD, Rath L, Perslar J, Burns TL, Rezai K, Vandenberg BF. Quantification of left ventricular function with an automated border detection system and comparison with radionuclide ventriculography. Am J Cardiol 73: 195–199, 1994PubMedCrossRefGoogle Scholar
  38. 38.
    Foster E, Cahalan MK. The search for intelligent quantitation in echocardiography: “eyball”, “trackball” and beyond. J Am Coll Cardiol 22: 848–850, 1993PubMedCrossRefGoogle Scholar
  39. 39.
    Smith JS, Roizen MF, Cahalan MK, Benefiel DJ, Beaupe PN, Sohn YJ, Schiller NB, Stoney RJ, Ehrenfeld WK. Does anesthetic technique make a difference? Augmentation of systolic blood pressure during carotid endarterectomy: Effect of phenyephrine versus light anesthesia and of isoflurane versus halothane on the incidence of myocardial ischemia. Anesthesiology 69: 846–853, 1988PubMedCrossRefGoogle Scholar
  40. 40.
    Triulzi M, Weyman A. Normal cross-sectional measurements in adults. In: Echocardiography, Weyman A, ed. Lea & Febiger, Philadelphia, pp 497–499, 1982Google Scholar
  41. 41.
    Himelman RB, Cassidy MM, Landzberg JS, Schiller NB. Reproducibility of quantitative echocardiography. Am Heart J 115: 425–431, 1988PubMedCrossRefGoogle Scholar
  42. 42.
    Gorcsan J, Morita S, Mandarino WA, Deneault LG, Kawai A, Kormos RL, Griffith BP, Pinsky MR. Two-dimensional echocardiographic automated border detection accurately reflects changes in left ventricular volume. J Am Soc Echocardiogr 6: 482–489, 1993PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Nikolai Kolev
    • 1
  • Günter Huemer
    • 1
  • Michael Zimpfer
    • 2
  1. 1.Department of Anesthesiology and General Intensive CareUniversity of ViennaAustria
  2. 2.University of ViennaAustria

Personalised recommendations