Advertisement

Spectral and Scattering Theory of the Schrödinger Equation for Three-Body Systems

  • J. Ginibre
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 17/1977)

Abstract

We review the status of the spectral and scattering theory of the nonrelativistic quantum mechanical three-body problem, with special emphasis on the work of Faddeev and his followers, based on the Faddeev equations.

Keywords

Essential Spectrum Point Spectrum Wave Operator Resolvent Operator Faddeev Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Agmon, Ann. Scuol. Norm. Sup. Pisa, Ser.IV, 2, 151–218.Google Scholar
  2. 2.
    W. Amrein, in Scattering theory in Math. Physics, J.A. Lavita and J.P. Marchand, Reidel, Dordrecht, 97–140, 1974.Google Scholar
  3. 3.
    E. Balslev, Decomposition of Many-Body Schrodinger Operators, Aarhus Univ. Preprint, 1976.Google Scholar
  4. 4.
    E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280–294, 1971.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    M. Sh. Birman, Vestn. L.G.U. 13, 163–166, 1961.MathSciNetGoogle Scholar
  6. 6.
    J.M. Combes, in Scattering theory in Mathematical Physics, J.A. Lavita and J.P. Marchand, Reidel, Dordrecht, 243–272, 1974.Google Scholar
  7. 7.
    M. Combescure, J. Ginibre, Ann. Phys. 101, 1976.Google Scholar
  8. 8.
    N. Dunford, J.Schwartz, Linear Operators, Inter-science, New York (1958), Vol. I.Google Scholar
  9. 9.
    L.D. Faddeev, Trud. Steklov. Math. Inst. 69, 1963.Google Scholar
  10. 10.
    P. Ferrerò, 0. De Pazzis, D.W. Robinson, Ann. IHP 21, 217–231, 1974.Google Scholar
  11. 11.
    J. Ginibre, M. Moulin, Ann. IHP 21, 97–145, 1974.MathSciNetGoogle Scholar
  12. 12.
    K. Hepp, Helv. Phys. Acta 42, 425–458, 1969.MathSciNetGoogle Scholar
  13. 13.
    W. Hunziker, Helv. Phys. Acta 39, 451–462, 1966.MathSciNetMATHGoogle Scholar
  14. 14.
    W. Hunziker, in: Lectures in Theoretical Physics, Gordon & Breach, New York, Vol. X-A, 1–48, 1968.Google Scholar
  15. 15.
    W. Hunziker, contribution to this conference.Google Scholar
  16. 16.
    T. Ikebe, Arch. Rati. Mech. Anal., 5, 1–34, 1960.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R.J. Iorio, M. Carroll, Commun. Math. Phys. 27, 137–145, 1972.ADSCrossRefGoogle Scholar
  18. 18.
    T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).MATHGoogle Scholar
  19. 19.
    T. Kato, Math. Ann. 162, 258–279, 1966.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    T. Kato, contribution to this conference.Google Scholar
  21. 21.
    S.T. Kuroda, Nuov. Cim. XII, 431–453, 1959.Google Scholar
  22. 22.
    S.T. Kuroda, Jour. Anal. Math. 20, 57–117.Google Scholar
  23. 23.
    R. Lavine, J. Funct. Anal. 12, 30–54, 1973.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    R. Lavine, J. Math. Phys. 14, 376–379.Google Scholar
  25. 25.
    S.P. Merkuriev, Theor. Math. Phys. 8, 235–250, 1971.Google Scholar
  26. 26.
    S.P. Merkuriev, Kiev Dreprint I.T.P. 99 P, 1973.Google Scholar
  27. 27.
    E. Mourre, Arm. IHP, in press.Google Scholar
  28. 28.
    R.G. Newton, J. Math. Phys. 12, 1552–1567, 1971.ADSMATHCrossRefGoogle Scholar
  29. 29.
    R. Omnès, Phys. Rev. 165, 1265–1272, 1968.ADSCrossRefGoogle Scholar
  30. 30.
    R.T. Prosser, J.Math. Phys. 5, 708–713, 1964.MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, Vol. I, 1972.Google Scholar
  32. 32.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, Vol. 11, 1975.Google Scholar
  33. 33.
    L. Rosenberg, Phys. Rev. 140 B, 217–226, 1965.Google Scholar
  34. 34.
    J. Schwinger, Proc. Natl. Acad. Sci. USA, 47, 122–129, 1961.MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    I.M. Sigal, Mathematical Foundations of Quantum Scattering Theory for multiparticle Systems, Tel- Aviv Univ. preprint (1975).Google Scholar
  36. 36.
    I.M. Sigal, Commun. Math. Phys. 48, 137–154, 1976.MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    I.M. Sigal, Commun. Math. Phys. 48, 155–164, 1976.Google Scholar
  38. 38.
    B. Simon, Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971.Google Scholar
  39. 39.
    B. Simon, Ann. Math. 97 247–274, 1973.MATHCrossRefGoogle Scholar
  40. 40.
    B. Simon, contribution to this conference.Google Scholar
  41. 41.
    L.E. Thomas, Ann. Phys. 90, 127–165, 1975.ADSCrossRefGoogle Scholar
  42. 42.
    C. Van Winter, Mat. Fys. Skrift. 2, 8, 5–60, 1964. Ibid. 2, 10, 5–94, 1965.Google Scholar
  43. 43.
    C. Van Winter, J. Math. Anal. Appi. 47, 633–670, 1974. Ibid. 48, 368–399, 1974. Ibid. 49, 88–123, 1975.MATHCrossRefGoogle Scholar
  44. 44.
    K.M. Watson, Phys. Rev. 89, 575–587, 1953.ADSMATHCrossRefGoogle Scholar
  45. 45.
    S. Weinberg, Phys. Rev, 133B, 232–256.Google Scholar
  46. 46.
    D.R. Yafaev, Dokl. Akad. Nauk. SSSR 206, 68–70, 1972.MathSciNetGoogle Scholar
  47. 47.
    D.R. Yafaev, Funct. Anal. i. e. Pril. 6, 103–104, 1972.Google Scholar
  48. 48.
    D.R. Yafaev, Math. Sborn. 94, 567–593, 1974.Google Scholar
  49. 49.
    D.R. Yafaev, Theor. Math. Phys. 25, 185–195, 1975.MATHCrossRefGoogle Scholar
  50. 50.
    D.R. Yafaev, Theor. Math. Phys. 27, 55–66, 1976.CrossRefGoogle Scholar
  51. 51.
    O.A. Yakubovskii, J. Nucl. Phys. (USSR), 5, 1312–1320, 1967.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Ginibre
    • 1
  1. 1.Lab. de Physique Théorique et Hautes EnergiesUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations