Advertisement

Gauge Theories and Superselection Rules

  • R. Streater
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 11/1973)

Abstract

There are four absolutely conserved quantum numbers in elementary particle physics; these are Q, the charge, B, the baryon number, L, the lepton number and M, the muon number. The following table shows the values these quantum numbers take in various states.

Keywords

Gauge Group Spin Wave Casimir Operator Bose Condensate Superselection Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, 1964.Google Scholar
  2. 2.
    F. Strocchi and A. S. Wightman, Princeton preprint.Google Scholar
  3. 3.
    R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, 1964.p. 5.Google Scholar
  4. 4.
    D. Kastler and R. Haag, An Algebraic Approach to Quantum Field Theory, J. Mathematical Phys. 5, 848 (1964).CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    H. J. Borchers, Trieste Lectures in Theoretical Physics (A. Salam Ed ), Vienna 1966.Google Scholar
  6. 6.
    R. Haag, S. Doplicher and J. E. Roberts, Fields, Observables and Gauge Transformations, Commun. Math. Phys. 13, 1–23 (1969)CrossRefMATHADSMathSciNetGoogle Scholar
  7. R. Haag, S. Doplicher and J. E. Roberts, Fields, Observables and Gauge Transformations, Commun. Math. Phys. 15 (73–200) (1969)MathSciNetGoogle Scholar
  8. R. Haag, S. Doplicher and J. E. Roberts, Local Observables and Particle Statistics, Commun. Math. Phys. 23, 199–230 (1971).CrossRefADSMathSciNetGoogle Scholar
  9. 7.
    R. F. Streater & I. F. Wilde, Fermion States of a Boson Field, Nucl. Phys. B24, 561 (1970)Google Scholar
  10. R. F. Streater, The C*-Algebra Approach to Quantum Field Theory, Phys. Scripta 3, 5 (1971).CrossRefADSGoogle Scholar
  11. 8.
    M. Takesaki, Disjointness of the KMS-States of Different Temperature, Commun. Math. Phys. 17, 33–41 (1970).CrossRefADSMathSciNetGoogle Scholar
  12. 9.
    R. F. Streater, Local Gauge Models Predicting Their own Superselection Rules, Report to the Moscow Conference, On Mathematical Problems of Quantum Field Theory and Quantum Statistical Mechanics, Dec. 1972.Google Scholar
  13. 10.
    I. E. Segal, Mathematical Problems of Relativistic Physics, A. M. S. 1963.Google Scholar
  14. 11.
    R. F. Streater, Spontaneous Breakdown of Symmetry in Axiomatic Theory, Proc. Roy. Soc. (1965).Google Scholar
  15. 12.
    A. O. Barut, Fermi States of a Boson Field, Trieste Preprint 1972.Google Scholar
  16. 13.
    J. Manuceau, Ann. Inst. Henri Poincaré, 8, 117 (1968).MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. Streater
    • 1
  1. 1.Bedford CollegeLondonUK

Personalised recommendations