Conformal Invariant Euclidean Quantum Field Theory

  • I. T. Todorov
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 11/1973)


The paper presents a review of conformal covariant quantum field theory with anomalous dimensions. An emphasis is made on the Euclidean formulation of conformal invariance and skeleton perturbation theory.


Minkowski Space Conformal Invariance Ward Identity Operator Product Expansion Feynman Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Polyakov, ZhETF Pisma Red. 12, 538 (1970) (transi. JETP Lett. 12, 381 (1970)).ADSGoogle Scholar
  2. 2.
    M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3.
    N. N. Bogolubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Moscow, Gostekhisdat, 1957 (transi. Intersc. Publ., New York, 1959).Google Scholar
  4. I. F. Ginzburg and D. V. Shirkov, ZhETF 49, 335 (1965).Google Scholar
  5. D. V. Shirkov, Ultraviolet behaviour and finite charge renormalization. Talk at the International Conference on Mathematical problems of Quantum Field Theory and Quantum Statistics, Moscow, Dec., 1972 (to appear).Google Scholar
  6. 4.
    K. Wilson, Phys. Rev. D3, 1818 (1971).ADSMathSciNetGoogle Scholar
  7. K. Wilson and J. Kogut, The renormalization group and the e-expansion, Institute for Advanced Study, Princeton, COO 2220–2 (1972) (to be published in physics Reports).Google Scholar
  8. 5.
    C. G. Callan, Jr., Phys. Rev. D2, 1951 (1970).Google Scholar
  9. K. Symanzik, Commun. Math. Phys. 18, 227 (1970).CrossRefMATHADSMathSciNetGoogle Scholar
  10. 6.
    W. Zimmermann, Lectures on Elementary Particles and Quantum Field Theory, 1970 Brandeis University Summer Institute in Theoretical Physics, vol. 1 ( MIT Press, Cambridge, 1970), pp. 395–589.Google Scholar
  11. K. G. Wilson, W. Zimmermann, Commun. Math. Phys. 24, 87 (1972).CrossRefMATHADSMathSciNetGoogle Scholar
  12. B. Schroer, Application of the normal product algorithm to zero mass limits, broken symmetries, and gauge fields, Lecture Notes in Physics, vol. 17, Strong Interaction Physics, International Summer Institute on Theoretical Physics in Kaiserslautern, ed. by W.Rühl and A. Vancura (Springer Verlag, Berlin, 1972) pp. 364–405.Google Scholar
  13. 7.
    K. Wilson, Phys. Rev. 179, 1499 (1969).CrossRefADSMathSciNetGoogle Scholar
  14. 8.
    K. Symanzik, Commun. Math. Phys. 23, 49 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  15. B. Schroer, Lett. Nuovo Cimento 2, 867 (1971).CrossRefGoogle Scholar
  16. 9.
    G. Mack and Abdus Salam, Ann. Phys. (N.Y.) 53, 174 (1969).CrossRefADSMathSciNetGoogle Scholar
  17. D. G. Boulware, L. S. Brown, R. D. Peccei, Phys.Rev. D2, 293 (1970).ADSGoogle Scholar
  18. 10.
    A. A. Migdal, Phys. Lett. 37B, 98 and 386 (1971).ADSMathSciNetGoogle Scholar
  19. G. Parisi and L. Peliti, Lett. Nuovo Cimento 2, 627 (1971).CrossRefGoogle Scholar
  20. E. Schreier, Phys. Rev. D3, 980 (1971).ADSGoogle Scholar
  21. R. Nobili, Conformal covariant Wightman functions, Preprint IFPTH1/72, padova (1972).Google Scholar
  22. 11.
    G. Mack and I. T. Todorov, Preprint IC/71/139, Trieste (1971) and Phys. Rev. D (to be published). This paper contains some additional references. See also I. T. Todorov, Conformal invariant quantum field theory, Dubna report, JINR E2–6642 (1972), Lecture Notes in Physics, Vol. 17, Strong Interaction Physics, International Summer Institute on Theoretical Physics in Kaiserslautern, ed. by W. Rühl and A. Vancura (Springer Verlag Berlin, 1972 ) pp. 270–299.Google Scholar
  23. 12.
    G. Mack and K. Symanzik, Commun. Math. Phys. 27, 247 (1972).CrossRefADSMathSciNetGoogle Scholar
  24. 13.
    G. Mack, Conformal invariance and short distance behaviour in quantum field theory, Lecture Notes in Physics, Vol. 17, Strong Interaction Physics, International Summer Institute on Theoretical Physics in Kaiserslautern, ed. by W. Rühl and A. Vancura (Springer Verlag Berlin, 1972) pp. 300–374.Google Scholar
  25. 14.
    R. A. Brandt and G. Preparata, Nucl. Phys. B27, 541 (1971).CrossRefADSGoogle Scholar
  26. Y. Frishman, Ann. Phys. (N.Y.) 66, 373 (1971).CrossRefADSMathSciNetGoogle Scholar
  27. 15.
    S. Ferrara, R. Gatto, A.F. Grillo, preprint LNF-71/79. Frascati (1971) (to appear in Springer Tracts in Modern Physics).Google Scholar
  28. S. Ferrara, A. Grillo, R. Gatto, Lett. Nuovo Cim. 2, 1363 (1971).CrossRefMathSciNetGoogle Scholar
  29. S. Ferrara, R. Gatto, A. Grillo and G. Parisi, Phys. Lett. 38B, 333 (1972).CrossRefGoogle Scholar
  30. V. K. Dobrev, E. H. Hristova, V. B. Petkova, D. B. Stamenov, Symmetric part of the conformal covariant operator product expansion of two spin 1/2 fields, Lecture at the X-th Winter School of Theoretical Physics, Karpacz, Poland (1973).Google Scholar
  31. 16.
    L. Bonora, Lett. Nuovo Cim. 3, 548 (1972)CrossRefGoogle Scholar
  32. S. Ferrara, R. Gatto, A. F. Grillo and G. Parisi, Lett. Nuovo Cim. 4, 115 (1972).CrossRefMathSciNetGoogle Scholar
  33. 17.
    B. Bartoli et al., Phys. Rev. D6, 2374 (1972). About the theoretical prediction of dilatation symmetry for the total cross section of hadrons, see R. Gatto, Riv. Nuovo Cim. 1, 514 (1969).Google Scholar
  34. 18.
    K. Berkelman, Electroproduction and deep inelastic scattering: a look at the final states, Invited talk at the XVI Intern. Conference on High Energy physics, NAL, Batavia, 1972. (Cornell Univ. report CLNS-194). For a theoretical analysis of deep inelastic scattering based on the ideas of a conformal invariant QFT, see G. Mack, Nucl. Phys. B35, 592 (1971) and ref. 13 as well as A. M. Polyakov, Scale invariance of strong interactions and its application to lepton-hadron reactions, preprint, Landau Institute for Theoretical Physics, Chernogolovka (1972).Google Scholar
  35. 19.
    R. A. Brandt, Phys. Rev. D1, 2808 (1970).ADSGoogle Scholar
  36. A. Leutwyler and A. Stern, Nucl. Phys. B20, 77 (1970).CrossRefADSMathSciNetGoogle Scholar
  37. R. Jackiw, R. Van Royen and G. B. West, Phys. Rev. D2, 2473 (1971).Google Scholar
  38. N. N. Bogolubov, A. N. Tavkhelidze and V.S. Vladimirov, Dubna reports, JINR P2–6342 and E2–6490 (1972).Google Scholar
  39. 20.
    J. D. Bjorken, Phys. Rev. 179, 1547 (1969).CrossRefADSGoogle Scholar
  40. G. Preparata, Lectures in light cone physics, proceedings on the 7th Finish Summer School in Physics, Loma-Koli, Finland, June-July, 1972, Univ of Helsinki, 1972, pp. 209–277.Google Scholar
  41. 21.
    V. A. Matveev, R. M. Muradyan and A. N. Tavkhelidze, Particles and Nucleus 2, 7 (1971).Google Scholar
  42. T. D. Lee, Scaling properties in weak and electromagnetic processes, preprint C0–3067 (2–11, New York) (1972).Google Scholar
  43. 22.
    H. Fritzsch and M. Gell-Mann, In: Broken Scale Invariance and the Light Cone, Lectures from the Coral Gables Conference on Fundamental Interactions at High Energy, ed. by M. Dal Gim et al. (Gordon and Breach, New York, 1971), pp. 1–42.Google Scholar
  44. P. Carruthers, Physics Reports, 1C, 1 (1971).CrossRefADSGoogle Scholar
  45. D. J. Gross and S. B. Treiman, Phys. Rev. D4, 2105 (1971).CrossRefADSGoogle Scholar
  46. R. Jackiw, Canonical light cone commutators and their applications, Springer Tracts in Modern Physics, 62, 1, (1972).CrossRefADSGoogle Scholar
  47. 23.
    R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969);CrossRefADSGoogle Scholar
  48. R. P. Feynman, Photon Hadron Interactions, W. A. Benjamin, New York (to appear);Google Scholar
  49. R. P. Feynman, What neutrinos can tell us about partons, in “Neutrino 72”, Europhysics Conference, Balatonfüred, Hungary, June 1972, OMKDK-Technoinform, Budapest (1972), vol. II, pp. 75–100.Google Scholar
  50. 24.
    E. C. Zeeman, J. Math. Phys. 5, 490 (1964).CrossRefMATHADSMathSciNetGoogle Scholar
  51. 25.
    M. Hortacsu, R. Seiler and B. Schroer, Phys. Rev. D5, 2518 (1972).CrossRefGoogle Scholar
  52. 26.
    M. Flato and D. Sternheimer, Comptes Rendus Acad. Sc. Paris, 263, A935 (1963).Google Scholar
  53. 26a.
    D. Gross and J. Wess, Phys. Rev. D2, 753 (1970).ADSGoogle Scholar
  54. M. Flato, J. Simon, D. Sternheimer, Ann. Phys. 61, 78 (1970).CrossRefMATHADSMathSciNetGoogle Scholar
  55. 27.
    J. Schwinger, Phys. Rev. 115, 721 (1959).CrossRefMATHADSMathSciNetGoogle Scholar
  56. T. Nakano, Prog. Theor. Phys. 21, 241 (1959)CrossRefMATHADSGoogle Scholar
  57. E. S. Fradkin, in Quantum Field Theory and Hydrodynamics (Trudy FIAN vol. 29, Moscow, 1965, in Russian), pp. 7–138.Google Scholar
  58. Later development in Euclidean QFT is reviewed in K. Symanzik, Euclidean quantum field theory, in Coral Gables Conference on Fundamental Interactions at High Energy, ed. by T. Gudehus et al. (Gordon and Breach, New York, 1969), pp. 19–31.Google Scholar
  59. 28.
    E. Nelson, Quantum fields and Markoff fields, Summer Institute on Partial Differential Equations, Berkeley (1971).Google Scholar
  60. E. Nelson, Time-ordered operator products of sharp-time quadratic forms. J. Functional Analysis (1972).Google Scholar
  61. E. Nelson, Construction of quantum fields from Markoff fields, J. Functional Analysis (to be published).Google Scholar
  62. E. Nelson, The free Markoff field, Princeton University preprint (1972).Google Scholar
  63. K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Havard University preprint (1972).Google Scholar
  64. J. Feldman, A relativistic Feynman-Kac formula, Havard University preprint (1972).Google Scholar
  65. K. Osterwalder and R. Schrader, Euclidean Fermi fields and a Feynman-Kac formula for boson-fermion models, Havard University preprint (1972).Google Scholar
  66. The author is indebted to A. Jaffe and B. Simon for acquainting him with the results of this work.Google Scholar
  67. 29.
    S. Adler, Massless, Euclidean quantum electrodynamics on the 5-dimensional unit hypersphere. Preprint NAL-THY-58, Institute for Advanced Study, Princeton (1972).Google Scholar
  68. 30.
    B. Schroer, Fortschr. d. Physik, 11, 1 (1963).CrossRefMathSciNetGoogle Scholar
  69. 31.
    I. M. Gel’fand and G. E. Shilov, Generalized Functions, vol. 1 (Academic Press, New York, 1964), (see in particular Sec. 3 of Chapt. i and Chapt. 4).Google Scholar
  70. 32.
    A. S. Wightman and L. Garding, Ark. f. Phys. 28, 129 (1965).MATHGoogle Scholar
  71. 33.
    M. D’Eramo, L. Peliti and G. Parisi, Lett. Nuovo Cim. 2, 878 (1971).CrossRefGoogle Scholar
  72. K. Symanzik, Lett. Nuovo Cim. 3, 734 (1972).CrossRefGoogle Scholar
  73. 34.
    R. Jost, The General Theory of Quantized Fields (American Math. Soc. Providence, Rhode Island, 1965).Google Scholar
  74. N. N. Bogolubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory (Nauka, Moscow, 1969; Benjamin, New York, to be published).Google Scholar
  75. 35.
    V. Glaser, A. Lehmann, W. Zimmermann, Nuovo Cim. 6, 1122 (1957).CrossRefMATHMathSciNetGoogle Scholar
  76. 36.
    S. F. Edwards, Phys. Rev. 90, 284 (1953).CrossRefMATHADSGoogle Scholar
  77. E. S. Fradkin, Zh. Exp. Teor. Fiz. 29, 121 (1955)MathSciNetGoogle Scholar
  78. E. S. Fradkin, transl. JETP 2, 148 (1956).Google Scholar
  79. I. Bialinicki-Birula, Bull. Acad. Pol. Sci. 13, 499 (1965).Google Scholar
  80. In the present context the bootstrap equation was considered by A. A.Migdal, ref. 10.Google Scholar
  81. 37.
    S. Coleman and R. Jackiw, Ann. Phys. (N.Y.) 67, 552 (1971).CrossRefADSMathSciNetGoogle Scholar
  82. 38.
    F. J. Dyson, Phys. Rev. 75, 1736 (1949).CrossRefMATHADSMathSciNetGoogle Scholar
  83. S. Weinberg, Phys. Rev. 118, 838 (1960).CrossRefMATHADSMathSciNetGoogle Scholar
  84. 39.
    F. Strocchi, Phys. Rev. D6, 1193 (1972).ADSGoogle Scholar
  85. 40.
    S. Adler, Phys. Rev. D5, 3021 (1972).ADSGoogle Scholar
  86. 41.
    H. J. Schnitzer, Constraints and anomalies in finite quantum electrodynamics, Brandeis University preprint (Oct. 1972).Google Scholar
  87. 42.
    C. J. Isham, Abdus Salam and J. Strathdee, Ann. Phys. (N. Y.), 62, 98 (1971).CrossRefMATHADSMathSciNetGoogle Scholar
  88. B. Zumino, Effective Lagrangians and broken symmetries, In: Lectures on Elementary particles and Quantum Field Theory, 1970 Brandeis University Summer Institute in Theoretical Physics, vol. 2 ( MIT Press, Cambridge, 1970 ), pp. 437–500.Google Scholar
  89. 43.
    G. Parisi, Does Bjorken scaling imply the parton model? Nota Interna 391, Università di Roma (1972).Google Scholar
  90. 44.
    R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).CrossRefMATHADSMathSciNetGoogle Scholar
  91. 45.
    A. A. Migdal, 4-dimensional soluble models of conformal field theory, Preprint, Landau-Institute for Theoretical Physics, Chernogolovka (1972).Google Scholar
  92. 46.
    K. Wilson, Phys. Rev. D2, 1473 (1970)ADSGoogle Scholar
  93. J. H. Lowenstein, Commun. Math. Phys. 16, 265 (1970)CrossRefADSMathSciNetGoogle Scholar
  94. J. H. Lowenstein and B. Schroer, Phys. Rev. D3, 1981 (1971)ADSGoogle Scholar
  95. G. F. Dell’Antonio, Y. Frishman and D. Zwanziger, Phys. Rev. D6, 988 (1972).CrossRefGoogle Scholar
  96. S. Ferrara, R. Gatto, A. F. Grillo, Nota Interna 385, Università di Roma (1972).Google Scholar
  97. M. Gomes, J. H. Lowenstein, Nuclear Phys., B45, 252 (1972).CrossRefADSGoogle Scholar
  98. J. Geicke and S. Meyer, The Callan-Symanzik coefficient in a massive Thirring model in 2+e dimensions. Preprint Freie Univ. Berlin (1972).Google Scholar
  99. G. Dell’Antonio, Model field theories (see Lectures at this School).Google Scholar
  100. 47.
    A. M. Polyakov, Duality in conformal field theory (to be published).Google Scholar
  101. 48.
    O. W. Greenberg, Ann. Phys. (N.Y.) 16, 158 (1961).CrossRefMATHADSGoogle Scholar
  102. D. W. Robinson, Phys. Lett. 9, 189 (1964).CrossRefADSMathSciNetGoogle Scholar
  103. A. S. Wightman, Introduction to some aspects of relativistic dynamics of quantum fields, Cargèse lectures, 1964.Google Scholar
  104. A. V. Efremov, A model of Lie fields, preprint JINR, P2–3731 Dubna (1968).Google Scholar
  105. 49.
    I. A. Swieca and A. H. Vtilkl, Remarks on conformal invariance, Preprint Dept. de Fisica, PUC, Rio de Janeiro, Brazil (1972).Google Scholar
  106. 50.
    M. O. Hortacsu, Conformal group in some model field theories; University of Pittsburgh dissertation (1971). See in particular Sec. 5 of Part I.Google Scholar
  107. 51.
    S. Coester, Phys. Rev. 95, 1318 (1954).CrossRefMATHADSMathSciNetGoogle Scholar
  108. Yu. A. Gol’fand, Zh. Exp. Teor. Fiz., 28, 140 (1955).MathSciNetGoogle Scholar
  109. Yu. V. Novozhilov, Zh. Exp. Teor. Fiz. 31, 493 (1956).Google Scholar
  110. 52.
    A. S. Wightman, Phys. Rev. 101, 860 (1956).CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • I. T. Todorov
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchRussian

Personalised recommendations