Infrared Singularities in Theories with Scalar Massless Particles

  • K. Symanzik
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 11/1973)


The best known theory with massless particles is quantum electrodynamics (QED). The masslessness of the photons leads to infrared (UR) singularities the Green’s functions have near the electron mass shell. These singularities1 are gotten correctly only by summing over all orders of perturbation theory as far as the soft-photon effects are concerned. I will describe UR singularities in theories with scalar neutral self-coupled massless particles. Also here the singularities are gotten correctly only by summing over all orders of perturbation theory, and again it suffices to do so with respect to the soft-massless-particle effects. Apart from this, the singularities have no relation nor resemblence to those in QED. They play a role in the quantum field theoretical treatment of some problems2 in statistical mechanics, but not in particle physics since we know no such massless particles. The reason for studying such singularities goes back to large-momenta-behaviour problems as I will briefly explain at the end.


Perturbation Theory Massless Particle Absorptive Part Normalization Momentum Renormalization Group Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Jackiw, L. Soloviev, Phys. Rev. 173, 1485 (1968). T. W. B. Kibble, Phys. Rev. 173, 1527 (1968). J. K. Storrow, Nuovo Cimento 54A, 15 (1968).Google Scholar
  2. 2.
    A. I. Larkin, D. E. Khmelnitskii, Zh. E. T. F. 56, 2087 (1969), transl. JETP 29, 1123 (1969).Google Scholar
  3. 3.
    W. Zimmermann, in “Lectures on Elemementary Particles and Quantum Field Theory”, 1970 Brandeis Summer Institute, Eds. S. Deser, M. Orisaru, H. Pendleton, Cambridge Mass.: MIT Press 1971. Techn. Repts. 9/72 and 11/72, New York University, April 1972.Google Scholar
  4. 4.
    T. Appelquist, Thesis, Cornell University, June 1968.Google Scholar
  5. 5.
    P. Blanchard, R. Sénéor, Th. 1420, CERN, Nov. 1971.Google Scholar
  6. 6.
    K. Hepp, Theorie de la rénormalisation, Berlin: Springer 1969.Google Scholar
  7. 7.
    K. Symanzik, DESY 73/6, Hamburg, March 1973.Google Scholar
  8. 8.
    D. Ruelle, Nuovo Cimento 19, 356 (1961).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. Coleman, R. F. Norton, Nuovo Cimento 38, 438 (1965)CrossRefGoogle Scholar
  10. 10.
    K. G. Wilson, Phys. Rev. 179, 1499 (1969).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    I. T. Diatlov, V. V. Sudakov, K. A. Ter-Martirosian, Zh. E. T. F. 32, 767 (1957), transl. JETP 5, 631 (1957).Google Scholar
  12. 12.
    L. D. Landau, A. Abrikosov, L. Halatnikov, Suppl. al Nuovo Cimento 3, 80 (1956).CrossRefMathSciNetGoogle Scholar
  13. 13.
    N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, New York: Intersc. Publ., 1959.Google Scholar
  14. 14.
    V. G. Vaks, Zh. E. T. F. 40, 792 (1961), transi. JETP 13, 556 (1961).Google Scholar
  15. 15.
    K. Symanzik, in Springer Tracts in Modern Physics, 57, 222 (1971).Google Scholar
  16. 16.
    K. Symanzik, Lett. al. Nuovo Cimento 2, 10 (1969).CrossRefGoogle Scholar
  17. 17.
    E.g. S.L. Adler, R. F. Dashen, “Current Algebras”, New York: Benjamin Inc., 1968.Google Scholar
  18. 18.
    K. Symanzik, Lett. al Nuovo Cimento 6, 77 (1973).CrossRefGoogle Scholar
  19. 19.
    K. Symanzik, Lectures on Lagrangian Quantum Field Theory, University of Islamabad, January 1968. (DESY T-71/1, February 1971 ).Google Scholar
  20. 20.
    S. Coleman, Lectures at Erice Summer School on Subnuclear Physics, July 1971.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • K. Symanzik
    • 1
  1. 1.DESYHamburgGermany

Personalised recommendations