On Phase Transitions in Open Systems FAR from Thermal Equilibrium

Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 11/1973)


In these lectures I shall outline some rigorous results, obtained in collaboration with E.H. Lieb [H4], concerning a class of non-trivial quantum mechanical many-body systems with irreversible behavior far away from thermal equilibrium.


Fluctuation Force Boson Field Irreversible Behavior Pump Parameter Macroscopic Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dl.
    S.R. de Groot, P. Mazur, “Non-equilibrium Thermodynamics”, North-Holland Publ. Co., Amsterdam (1962).Google Scholar
  2. D2.
    R.H. Dicke, Phys. Rev. 93, 99 (1954).CrossRefMATHADSGoogle Scholar
  3. D3.
    V. Dohm, Solid State Comm. 11, 1273 (1972).CrossRefADSGoogle Scholar
  4. El.
    A. Einstein, Ann. d. Physik 33, 1275 (1910).CrossRefMATHADSGoogle Scholar
  5. G1.
    P. Glanssdorff, I. Prigogine, “Thermodynamic Theory of Structure, Stability and Fluctuations”, Wiley, London (1971).Google Scholar
  6. G2.
    R. Graham, H. Haken, Z. Physik 237, 30 (1970).CrossRefADSMathSciNetGoogle Scholar
  7. G3.
    M. S. Green, J. Chem. Phys. 20, 1281 (1952).CrossRefADSMathSciNetGoogle Scholar
  8. H1.
    H. Haken, Handbuch der Physik Vol. XXV/2C, Springer-Berlin (1970).Google Scholar
  9. H2.
    K. Hepp, E.H. Lieb, Annals of Phys. 76, 360 (1973).CrossRefADSMathSciNetGoogle Scholar
  10. H3.
    K. Hepp, E.H. Lieb, “Statistical mechanics of matter coupled to a quantized radiation field”, preprint, Bures (1973).Google Scholar
  11. H4.
    K. Hepp, E.H. Lieb, to appear in Helv. Phys. Acta.Google Scholar
  12. H5.
    E. Hopf, Ber. d. math.-phys. Kl. d. Sächs. Akad. d. Wiss., Leipzig 94, 3 (1942).Google Scholar
  13. K1.
    D. Kastler, D.W. Robinson, Comm. Math. Phys. 3, 151 (1966).CrossRefMATHADSMathSciNetGoogle Scholar
  14. L1.
    O.E. Lanford III, in “Statistical Mechanics and Mathematical Problems” (Ed. A. Lenard ), Springer, Berlin (1973).Google Scholar
  15. L2.
    M. Lax, in “Phase Transitions and Superfluidity”, Brandeis Lectures 1965 (M. Chrétien et al., ed.), Gordon and Breach, NY (1968).Google Scholar
  16. O1.
    L. Onsager, Phys. Rev. 37, 405; 38, 2265 (1931).CrossRefADSGoogle Scholar
  17. R1.
    D. Ruelle, Comm. Math. Phys. 3, 133 (1966).CrossRefMATHADSMathSciNetGoogle Scholar
  18. R2.
    D. Ruelle, F. Takens, Comm. Math. Phys. 20, 167 (1971).CrossRefMATHADSMathSciNetGoogle Scholar
  19. S1.
    M. O. Scully, V. Degiorgi, Phys. Rev. A2, 1170 (1970).CrossRefGoogle Scholar
  20. U1.
    G. E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • K. Hepp
    • 1
  1. 1.Department of PhysicsETHZürichSwitzerland

Personalised recommendations