Advertisement

Renormalized Local Quantum Field Theory and Critical Behaviour

  • F. Jegerlehner
  • B. Schroer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 11/1973)

Abstract

In these lectures we discuss critical phenomena using methods of renormalized local quantum field theory. Such methods have already been used in the following articles:

1. G. Mack, Kaiserslautern lectures 1972, Lecture Notes in Physics, Vol. 17, Springer Verlag

2. C. Di Castro, Lettere Nuovo Cim. 5, 69 (1972).

3. B. Schroer, “A Theory of Critical Phenomena based on the Normal Product Formalism”, FU Berlin preprint 1972.

4. E. Brezin, I. C. Guillou and J. Zinn-Justin, “Wilson Theory of Critical Phenomena and CallanSymanzik Equations in 4-ε Dimensions”. Saclay preprint.

5. P. K. Mitter, “Callan-Symanzik Equations and ε-Expansion”. University of Maryland Technical Report.

Keywords

Anomalous Dimension Critical Phenomenon Critical Theory Vertex Function Critical Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson and J.Kogut, Institute for Advanced Study Lecture Notes C 0 0 2220–2 1972.Google Scholar
  2. 2.
    K. Osterwalder and R. Schrader, Havard University preprint 1972 and literature quoted therein.Google Scholar
  3. 3.
    K. G. Wilson, Phys. Rev. B4, 3174 (1971).CrossRefMATHADSGoogle Scholar
  4. 4.
    For those of our mathematically minded collegues for which the word “identical” is too strong we refer to 2).Google Scholar
  5. 5.
    K. Wilson, Phys. Rev. D3, 1818 (1971).ADSMathSciNetGoogle Scholar
  6. 6.
    R. Brandt, Ann. Phys. 52, 122 (1969).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    W. Zimmermann, Brandeis Lectures, Cambridge 1970.Google Scholar
  8. 8.
    J. H. Lowenstein and B. Schroer, NYU report 18172, to be published in the comment section of Phys. Rev.D.Google Scholar
  9. 9.
    M. Gomes and J. Lowenstein, Nucl. Phys. B, Sept. 1972.Google Scholar
  10. 10.
    See for example reference 7.Google Scholar
  11. 11.
    Y. M. Lam, University of Pittsburgh preprint, Sept.1972.Google Scholar
  12. 12.
    J. H. Lowenstein, University of Maryland Lecture Notes 1972. J. H. Lowenstein, Commun. Math. Phys. 24, (1971).Google Scholar
  13. 13.
    J. H. Lowenstein, Phys. Rev. D4, 2281 (1971).CrossRefADSGoogle Scholar
  14. 14.
    Y. M. Lam, Phys. Rev. D6, 2145 (1972).ADSGoogle Scholar
  15. 15.
    M. Gomes and J. H. Lowenstein, “Linear Relations among Normal Product Fields”, University of Pittsburgh preprint 1972.Google Scholar
  16. 16.
    S. Weinberg, Phys. Rev. 118, 838 (1960).CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    K. Symanzik, Springer Tracts in Modern Phys., Vol. 57, (1971) and Commun. Math. Phys. 23, 49 (1971).CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    J. T. Diatlov, V.V. Sudakov, K.A. Ter-Martirosian JETP 5, 631 (1957).Google Scholar
  19. 19.
    The following discussion is taken from Symanzik ref.17 with the slight, but for our purpose important modification, that our u normalization permits the direct identification with a u-normalized zero-mass theory.Google Scholar
  20. 20.
    B. Schroer, “A Theory of Critical Phenomena based on the Normal Product Formalism”, FU Berlin preprint 1972. See distinction between short-and long-distance scaling limits according to the slope of Q has been first discussed by G. Mack, Kaiserslautern Lectures, Lecture Notes in Physics Vol. 17, Springer Verlag.Google Scholar
  21. 21.
    E. Brezin, I.C. Guillon and J. Zinn-Justin, “Wilson Theory of Critical Phenomena and Callan-Symanzik Equations in 4-e Dimensions”, Saclay preprint. P.K. Mitter, “Callan-Symanzik Equations and a-Expansions”. University of Maryland Technical Report No. 73–020. The scale invariant correlation functions for statistical mechanics cannot be constructed by dilatation processes starting from the massive theory. The computational part of the determination of the critical indices is correct in these papers because the authors pick among the many scale invariant limits the one with anomalous dimension which moves continously into zero for ε → 0. The values of their critical coupling constant in 2nd order in a is different from our aλ0(ε) and cannot be used to construct the correlation function at the critical temperature.Google Scholar
  22. 22.
    A.I. Larkin and D.E. Khmel’nitzky, JETP 29, 1123 (1969). These authors obtain for logarithmic factors in the leading term. If perturbation theory is only done in the coefficients of the differential equations, one does not obtain a logarithm. Our statement is relevant for the critical correlation functions only if our idealized picture, which led to the elimination of the cut-off (lattice distance), is correct in 4 dimensions. Compare K. Symanzik, “On theories with Massless Particles” DESY preprint.Google Scholar
  23. 23.
    In the following we present the computation of critical indices directly for the m = 0 preasymptotic theory. This computation is simpler than the massive one in ref. 21.Google Scholar
  24. 24.
    K.G. Wilson, Phys. Rev. Letters 28, 548 (1972). E. Brezin, D.J. Wallace and K.G. Wilson, Phys. Rev. Letters 29, 591 (1972).Google Scholar
  25. 25.
    L.P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967).CrossRefADSGoogle Scholar
  26. 26.
    K. Symanzik, DESY preprint 1973.Google Scholar
  27. 27.
    G. Mack, Kaiserslautern lectures “Lecture Notes in Physics” Vol. 17, Springer Verlag, chapter 7, p. 314.Google Scholar
  28. 28.
    Private communication from J. Geicke, S. Meyer and R. Seiler.Google Scholar
  29. 29.
    J. Geicke and S. Meyer, FU Berlin preprint to be published in Phys. Letters.Google Scholar
  30. 30.
    T.T. Wu, Phys. Rev. 149, 380 (1966).CrossRefADSGoogle Scholar
  31. 31.
    F. Wegener, Phys. Rev. B5, 4529 (1972).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • F. Jegerlehner
    • 1
  • B. Schroer
    • 1
  1. 1.Institut für Theoretische Physik FreieUniversität BerlinGermany

Personalised recommendations