Lattice QCD

  • P. Hasenfratz
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 25/1983)


The surprising message from the deep inelastic e-p scattering experiment at SLAC more than ten years ago was that under the photon microscope the energetic proton seems to be built up from pointlike elements, from quark partons. The parton Struck by the photon behaves like a free particle. Strong interactions become weak at large energies and this feature singled out QCD almost uniquely as the candidate theory of strong interactions.


Gauge Theory Partition Function Wilson Loop Chiral Symmetry Continuum Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Wilson, Phys. Rev. D10 (1974) 2445.ADSGoogle Scholar
  2. 2.
    A partial list of summary papers on the subject: J.-M. Drouffe and C. Itzykson, Phys. Reports 38C (1978) 133.ADSMathSciNetCrossRefGoogle Scholar
  3. L.P. Kadanoff, Rev. Mod. Phys. 49 (1977) 267.ADSMathSciNetCrossRefGoogle Scholar
  4. J.P. Kogut, Rev. Med. Phys. 51 (1979) 659.ADSMathSciNetCrossRefGoogle Scholar
  5. G. Parisi, XX Int. Conf. on High Energy Physics, Madison, Wisconsin, 1980 (Amer. Inst. Phys., New York, 1981), p. 1531.Google Scholar
  6. P. Hasenfratz, International Conference on High Energy Physics, Lisbon, 1981, Proceedings p. 620.Google Scholar
  7. C. Rebbi, XXI Int. Conf. on High Energy Physics, Paris, 1982.Google Scholar
  8. P. Hasenfratz, in the Proceedings of the Johns Hopkins Workshop, Florence, 1982.Google Scholar
  9. J.B. Kogut, Illinois preprint, ILL-(TH)-82–46 (1982).Google Scholar
  10. 3.
    R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367.ADSMathSciNetCrossRefGoogle Scholar
  11. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, New York, (Mc Graw-Hill Book Comp.) (1965).MATHGoogle Scholar
  12. 4.
    J. Schwinger, Phys. Rev. 115 (1959) 721MATHADSMathSciNetCrossRefGoogle Scholar
  13. G.C. Wiek, Phys. Rev. 96 (1954) 1124.ADSMathSciNetCrossRefGoogle Scholar
  14. 5.
    K. Osterwalder and R. Schräder, Commun. Math. Phys. 42 (1975) 211.CrossRefGoogle Scholar
  15. B. Simon, The p((φ)2 Euclidean (Quantum) Field Theory (Princeton University, Princeton, N.J.) (1974).Google Scholar
  16. E. Nelson, in Constructive Quantum Field theory, (Springer Verlag, Berlin) (1973).Google Scholar
  17. 6.
    The independence of the continuum limit on the lattice structure is an important question. Unfortunately not much has been done until now in this field. An example is discussed by W. Celmaster, Northeastern Univ. preprint NUB Nr. 2561 (1982). The exciting attempt of defining field theories on a random lattice will not be discussed here. We refer the interested reader to the literatureGoogle Scholar
  18. N.H. Christ, R. Friedberg and T.D. Lee, Nucl. Phys. B202 (1982) 89.ADSMathSciNetCrossRefGoogle Scholar
  19. N.H. Christ, R. Friedberg and T.D. Lee, Nucl. Phys. B210 [FS6] (1982) 310, 337.ADSMathSciNetCrossRefGoogle Scholar
  20. 7.
    Half-integer spin fermion fields will be defined on lattice points also (Section 7). This is not very natural in the above sense. The consequences of a different procedure are discussed in P. Becker and H. Joos, DESY preprint, DESY-82–031 (1982).Google Scholar
  21. T. Banks, Y. Dothan and D. Horn, Phys. Lett. 117B (1982) 413.ADSMathSciNetGoogle Scholar
  22. 8.
    For a detailed discussion on the non-Abelian case see R. Balian, J.-M. Drouffe and C. Itzykson, Phys. Rev. D10 (1974) 3376.ADSGoogle Scholar
  23. 9.
    B.E. Baaquie, Phys. Rev. D16 (1977) 2612.Google Scholar
  24. 10.
    L. Onsager, Phys. Rev. 65 (1944) 117.MATHADSMathSciNetCrossRefGoogle Scholar
  25. M.E. Fisher and R.J. Burford, Phys. Rev. 156 (1967) 583.ADSCrossRefGoogle Scholar
  26. 11.
    F. Wegner, J. Math. Phys. 12 (1971) 2259.Google Scholar
  27. 12.
    K. Osterwalder and E. Seiler, Ann. Phys. (NY) 110 (1978) 440.ADSMathSciNetCrossRefGoogle Scholar
  28. 13.
    See for instance D.J. Gross, Lectures at the Les Houches Summer School, 1975 (North Holland P.C., ed. R. Balian).Google Scholar
  29. 14.
    Of course, this is not true for those dimensionful quantities which depend explicitly on momenta or co-ordinates like a scattering cross-section.Google Scholar
  30. 15.
    A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B (1980) 165ADSGoogle Scholar
  31. 16.
    Actually, no explicit proof, valid in every order, exists in the literature. At the one loop level it is easy to produce a general argument and the Statement has been checked explicitly (see[15]). Although it is a common lore that the renormalized perturbation theory on the lattice is identical to that of the continuum prescriptions in every order, it would be nice to have an explicit demonstra tion.Google Scholar
  32. 17.
    R. Dashen and D. Gross, Phys. Rev. D23 (1981) 2340.ADSGoogle Scholar
  33. H. Kawai, R. Nakayama and K. Seo, Nuclear Phys. B189 (1981) 40.Google Scholar
  34. A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B193 (1981) 210.ADSMathSciNetCrossRefGoogle Scholar
  35. P. Weisz, Phys. Letters. 100B (1981) 331.ADSGoogle Scholar
  36. A. Gonzales-Arroyo and C.P. Korthals Altes, Nucl. Phys. B205 [FS5] (1982) 46.ADSCrossRefGoogle Scholar
  37. H.S. Sharatchandra, H.J. Thun and P. Weisz, Nucl. Phys. B192 (1981) 205.ADSCrossRefGoogle Scholar
  38. F. Karsch, Nucl. Phys. B205 [FS5] (1982) 285.ADSCrossRefGoogle Scholar
  39. 18.
    A partial list of references: J.B. Kogut, R.B. Pearson and J. Shigemitsu, Phys. Rev. Lett. 43 (1979) 484.ADSCrossRefGoogle Scholar
  40. J.B. Kogut and J. Shigemitsu, Phys. Rev. Lett. 45 (1980) 410.ADSCrossRefGoogle Scholar
  41. J.B. Kogut, R.B. Pearson and J. Shigemitsu, Phys. Lett. 98B (1981) 63.ADSMathSciNetGoogle Scholar
  42. G. Münster, Phys. Lett. 95B (1980) 59.ADSGoogle Scholar
  43. G. Münster, Nucl. Phys. B190 [FS3] (1981) 439ADSCrossRefGoogle Scholar
  44. G. Münster, Nucl. Phys. E.: B205 [FS5] (1982) 648.Google Scholar
  45. G. Münster and P. Weisz, Phys. Lett. 96B (1980) 119.ADSGoogle Scholar
  46. K. Seo, Enrico Fermi Inst, preprint, EFI 82–10 (1982).Google Scholar
  47. 19.
    J. Smit, Nucl. Phys. B206 (1982) 309.ADSCrossRefGoogle Scholar
  48. 20.
    A. Hasenfratz, E. Hasenfratz and P. Hasenfratz Nucl. Phys. B181 (1981) 353.Google Scholar
  49. C. Itzykson, M. Peskin and J.B. Zuber, Phys. Lett. B95 (1980) 259.ADSMathSciNetGoogle Scholar
  50. M. Lüscher, G. Münster and P. Weisz, Nucl. Phys. B180 (1980) 1.Google Scholar
  51. 21.
    K. Binder, in Phase Transitions and Critical Phenomena (eds. C. Domb and S. Green), Academic Press, New York (1976), Vol. 5BGoogle Scholar
  52. K. Binder, Monte Carlo Methods in Statistical Physics, Springer Verlag (1979), (ed. K. Binder).Google Scholar
  53. 22.
    After the pioneering work of M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42 (1979) 1390.ADSCrossRefGoogle Scholar
  54. where the d=4, Z2 gauge theory was investigated, and of M. Creutz, Phys. Rev. Lett. 43 (1979) 553, measuring for the first time the string tension in an SU(2) gauge theory, a large number of works has been published. For a detailed list of references, the reader is referred to the summary works in [2].ADSCrossRefGoogle Scholar
  55. 23.
    For an interesting attempt which works for Abelian gauge theories, see: T. Sterling and J. Greensite, Berkeley preprint, LBL-14769 (1982).Google Scholar
  56. 24.
    R. Balian, J.-M. Drouffe and C. Itzykson, Phys. Rev. D11 (1975) 2104.Google Scholar
  57. 25.
    J.-M. Drouffe, Nucl. Phys. B170 [FS1] (1980) 211.ADSMathSciNetCrossRefGoogle Scholar
  58. E. Brezin and J.-M. Drouffe, Nucl. Phys. B200 [FS4] (1982) 93.ADSMathSciNetCrossRefGoogle Scholar
  59. 26.
    V. Alessandrini, V. Hakim and A. Krzywicki, Nucl. Phys. B215 [FS7] (1983) 109.ADSCrossRefGoogle Scholar
  60. V. Alessandrini, CERN preprint TH.3336 (1982)Google Scholar
  61. J. Greensite and B. Lautrup, Phys. Lett. 104B (1981) 41.ADSGoogle Scholar
  62. H. Flyvbjerg, B. Lautrup and J.B. Zuber, Phys. Lett. 110B (1982) 279.ADSGoogle Scholar
  63. B. Lautrup, Niels Bohr Institute preprint NBI-HE-82–8 (1982).Google Scholar
  64. V.F. Müller and W. Rühl, Nucl. Phys. B210 [FS6] (1982) 289.ADSCrossRefGoogle Scholar
  65. 27.
    S. Elitzur, Phys. Rev. D12 (1975) 3978.ADSGoogle Scholar
  66. 28.
    K. Wilson, Lecture presented at the Abingdon Meeting on Lattice Gauge Theories (1981).Google Scholar
  67. 29.
    B. Berg, A. Billoire and C. Rebbi, Ann. Phys. 142 (1982) 185.ADSCrossRefGoogle Scholar
  68. B. Berg and A. Billoire, Phys. Lett. 113B (1982) 65.CrossRefGoogle Scholar
  69. B. Berg, CERN Preprint TH.3327 (1982).Google Scholar
  70. M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, F. Rapuano, B. Taglienti and Zhang Yi-cheng, Phys. Lett. 11OB (1982) 295.ADSGoogle Scholar
  71. K. Ishikawa, M. Teper and G. Schierholz, Phys. Lett. 110B (1982) 399ADSGoogle Scholar
  72. K. Ishikawa, M. Teper and G. Schierholz, ibid 116B (1982) 429ADSGoogle Scholar
  73. K. Ishikawa, M. Teper and G. Schierholz, and DESY preprint 83–004 (1983).Google Scholar
  74. 30.
    M. Creutz, Phys. Rev. Lett. 45 (1980) 313.ADSCrossRefGoogle Scholar
  75. 31.
    G. Bhanot and C. Rebbi, Nucl. Phys. B180 [FS2] (1981) 469.ADSCrossRefGoogle Scholar
  76. 32.
    C.B. Lang and C. Rebbi, Phys. Lett. 115B (1982) 137.ADSMathSciNetGoogle Scholar
  77. 33.
    For recent reviews, see: O. Shafi, in International Conference on High Energy Physics, Lisbon (1981), ed. J. Dias de Deus L. Van Hove.Google Scholar
  78. O. Shafi, in Quark Matter Formation and Heavy Ion Collisions, Bielefeld (1982), eds. M. Jacob and H. Satz.Google Scholar
  79. 34.
    N. Cabibbo and G. Parisi, Phys. Lett. 59B (1975) 67.ADSGoogle Scholar
  80. J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.ADSCrossRefGoogle Scholar
  81. P.D. Morley and M.B. Kislinger, Physics Reports 51C (1979) 63.Google Scholar
  82. M.B. Kislinger and P.D. Morley, Phys. Rev. D13 (1976) 2771.ADSGoogle Scholar
  83. B.A. Freedman and L.D. Merran, Phys. Rev. D16 (1977) 1130, 1147, 1169.ADSGoogle Scholar
  84. J.I. Kapusta, Nucl. Phys. B148 (1979) 461.ADSCrossRefGoogle Scholar
  85. V. Baluni, Phys. Rev. D17 (1978) 2092.ADSGoogle Scholar
  86. E.V. Shuryak, Physics Reports 61C (1980) 71.ADSMathSciNetCrossRefGoogle Scholar
  87. D.J. Gross, R.D. Pisarki and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43.ADSCrossRefGoogle Scholar
  88. 35.
    A.M. Polyakov, Phys. Lett. 72B (1978) 477.ADSMathSciNetGoogle Scholar
  89. L. Susskind, Phys. Rev. D20 (1979) 2610.ADSGoogle Scholar
  90. J.B. Kogut, CLNS-402 (1978).Google Scholar
  91. 36.
    L.D. Merran and B. Svetitsky, Phys. Lett. 98B (1981) 195.ADSGoogle Scholar
  92. J. Kuti, J. Polonyi and K. Szlachänyi, Phys. Lett. 98B (1981) 199.ADSGoogle Scholar
  93. J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. B205 [FS5] (1982) 545ADSCrossRefGoogle Scholar
  94. Phys. Lett. 101B (1981) 89.Google Scholar
  95. 37.
    K. Kajantie, C. Montonen and E. Pietarinen, Z. Phys. C9 (1981) 253ADSGoogle Scholar
  96. I. Montvay and E. Pietarinen, Phys. Lett. 115B (1982) 151.ADSGoogle Scholar
  97. 38.
    J. Kogut, M. Stone, H.W. Wyld, W.R. Gibbs, J. Shigemitsu, S.H. Shenker and D.K. Sinclair, Phys. Rev. Lett 50 (1983) 393.ADSCrossRefGoogle Scholar
  98. T. Celik, J. Engels and H. Satz, Bielefeld preprint, BI– TP83/04 (1983).Google Scholar
  99. 39.
    N.S. Manton, Phys. Lett. 96B (1980) 328.ADSMathSciNetGoogle Scholar
  100. 40.
    J.-M. Drouffe, Phys. Rev. D18 (1978) 1174.ADSGoogle Scholar
  101. P. Menotti and E. Onofri, CERN preprint TH.3026 (1981).Google Scholar
  102. 41.
    J.B. Kogut and L. Susskind, Phys. Rev. D11 (1975) 395.ADSGoogle Scholar
  103. 42.
    For an example, see the third reference in 17.Google Scholar
  104. 43.
    C.B. Lang, C. Rebbi, P. Salomonson and B.-S. Skagerstam, Phys. Lett. 101B (1981) 173ADSGoogle Scholar
  105. C.B. Lang, C. Rebbi, P. Salomonson and B.-S. Skagerstam, Phys. Rev. D26 (1982) 2028.ADSGoogle Scholar
  106. 44.
    H.S. Sharatchandra and P.H. Weisz, DESY preprint 81–083 (1981).Google Scholar
  107. 45.
    R.V. Gavai, F. Karsch and H. Satz, Bielefeld preprint BI-TP 82/26 (1982).Google Scholar
  108. G. Bhanot and R. Dashen, Phys. Lett. 113B (1982) 299.ADSGoogle Scholar
  109. B. Grossman and S. Samuel, New York preprint RU 82/B/25 1982Google Scholar
  110. A. Gonzales Arroyo, C.P. Korthals Altes, J. Peiro and M. Perrottet, Phys. Lett. 116B (1982) 414.ADSGoogle Scholar
  111. Yu.M. Makeenko, M.I. Polikarpov and A.V. Zhelonkin, Moscow preprint ITEP-21 (1983).Google Scholar
  112. 47.
    The string tension result is taken from: R.W.B. Ardill, M. Creutz and K.J.M. Moriarty, Brookhaven preprint BNL-32377 (1982).Google Scholar
  113. The mass gap is obtained by B. Berg and A. Billoire as given in: B. Berg, Lecture Notes presented at the Johns Hopkins Workshop, Florence (1982)Google Scholar
  114. B. Berg and A. Billoire CERN preprint TH.3327 (1982), and it is consistent with the results obtained by K. Ishikawa et al. in [29].The critical temperature is quoted from the second reference in [3 8].Google Scholar
  115. 48.
    H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792.ADSCrossRefGoogle Scholar
  116. E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett. (1981) 1795.Google Scholar
  117. D.H. Weingarten, Phys. Lett. B109 (1982) 57.ADSMathSciNetGoogle Scholar
  118. H. Hamber, E. Marinari, G. Parisi and C. Rebbi, Phys. Lett. B108 (1982) 314.ADSGoogle Scholar
  119. A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, Phys. Lett. B110 (1982) 282ADSGoogle Scholar
  120. A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, and Phys. Lett. B117 (1982) 81.ADSGoogle Scholar
  121. F. Fucito, G. Martineiii, C. Omero, G. Parisi, R. Petronzio and F. Rapuano, Nucl. Phys. B210 (1982) 407.ADSCrossRefGoogle Scholar
  122. G. Martineiii, C. Omero, G. Parisi and R. Petronzio, Phys. Lett. 117B (1982) 434.ADSGoogle Scholar
  123. G. Martineiii, G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. 116B (1982).Google Scholar
  124. D.H. Weingarten, Indiana University preprint IUHET-82 (1982).Google Scholar
  125. C. Bernärd, T. Draper and K. Olynyk, Phys. Rev. Lett. 49 (1982) 1076.ADSCrossRefGoogle Scholar
  126. H. Hamber and G. Parisi, Brookhaven preprint BNL 31322 (1982).Google Scholar
  127. P. Hasenfratz and I. Montvay, Phys. Rev. Lett. 50 (1983) 309.ADSCrossRefGoogle Scholar
  128. C. Bernard, T. Draper and K. Olynyk, UCLA/82/TEP/22 (1982).Google Scholar
  129. R. Gupta and A. Patel, CALTECH preprint CALT-68–966 (1982).Google Scholar
  130. 50.
    J. Kogut, M. Stone, H.W. Wyld, J. Shigemitsu, S.H. Shenker and D.K. Sinclair, Phys. Rev. Lett. 48 (1982) 1140.ADSCrossRefGoogle Scholar
  131. See also the first reference in[38]and: J. Engels, F. Karsch and H. Satz, Phys. Lett. 113B (1982) 398.ADSGoogle Scholar
  132. J. Engels and F. Karsch, “The deconfinement transition for quenched SU(2) lattice QCD with Wilson fermions”, CERN preprint TH.3481 (1982).Google Scholar
  133. 51.
    P. Hasenfratz and F. Karsch, CERN preprint TH.3530 (1983).Google Scholar
  134. 52.
    S.L. Adler, Brandeis University Summer Institute in Theoretical Physics, eds. S. Deser, M. Grisaru and H. Pendieton, MIT Press, Cambridge, MA, and London (1970).Google Scholar
  135. 53.
    S.L. Adler, Phys. Rev. V77 (1969) 2426.ADSCrossRefGoogle Scholar
  136. J.S. Bell and R. Jackiw, Nuovo Cimento 60A (1969) 47.ADSGoogle Scholar
  137. 54.
    L.H. Karsten and J. Smit, Nucl. Phys. B183 (1981) 103.ADSCrossRefGoogle Scholar
  138. 55.
    K.G. Wilson, in New Phenomena in Subnuclear Physics (Erice 1975), ed. A. Zichichi, Plenum Press, New York (1977).Google Scholar
  139. 56.
    A. Hasenfratz and P. Hasenfratz, Phys. Lett. 104B (1981) 489.ADSGoogle Scholar
  140. C.B. Lang and H. Nicolai, Nucl. Phys. B200 [FS4] (1982) 135.ADSCrossRefGoogle Scholar
  141. I. O. Stamatescu. Phys. Rev. D25 (1982) 1130.ADSMathSciNetGoogle Scholar
  142. 57.
    On the lattice this problem is discussed in detail by B.E. Baaquie, Phys. Rev. D16 (1977) 2612.ADSGoogle Scholar
  143. 58.
    V. Baluni, Phys. Rev. D17 (1978) 2092.ADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • P. Hasenfratz
    • 1
  1. 1.CERNSwitzerland

Personalised recommendations