Stochastic Quantization

  • John R. Klauder
Part of the Acta Physica Austriaca book series (FEWBODY, volume 25/1983)


In this introductory survey to stochastic quantization we outline this new approach for scalar fields, gauge fields, fermion fields, and Condensed matter problems such as electrons in solids and the Statistical mechanics of quantum spins.


Partition Function Coherent State Gauge Field Langevin Equation Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Parisi and Wu Yong-Shi, Sci. Sinica 24 (1981) 483.MathSciNetGoogle Scholar
  2. 2.
    See. e.g., H. McKean, Stochastic Integrals (Academic, 1969).Google Scholar
  3. 3.
    J.R. Klauder and H. Ezawa, Prog. Theor. Phys. 69 (1983) 664.CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    See, e.g., Y. Nakano, “One-Time Characteristic Functional in the Stochastic Quantization” and “Hidden Supersymmetry in the Stochastic Quantization”, University of Alberta preprints; W. Grimus and H. Hüffel, “Perturbation Theory from Stochastic Quantization of Scalar Fields”, CERN preprint.Google Scholar
  5. 5.
    See, e.g., G. Parisi and Wu Yong-Shi, Sci. Sinica 24 (1981) 483.MathSciNetGoogle Scholar
  6. D. Zwanziger, Nucl. Phys. B192 (1981) 259.CrossRefADSMathSciNetGoogle Scholar
  7. L. Baulieu and D. Zwanziger, B193 (1981) 163.Google Scholar
  8. J. Alfaro and B. Sakita, “Stochastic Quantization and Large N Limit of U(N) Gauge Theory”, City College preprint.Google Scholar
  9. M. Namiki, I. Ohba, K. Okano and Y. Yamanaka, “Stochastic Quantization of Non-Abelian Gauge Field — Unitary Problem and Faddeev-Popov Ghost Effects”, Waseda University preprint.Google Scholar
  10. 7.
    L. Faddeev and V. Popov, Phys. Lett. 25B (1967) 29.ADSGoogle Scholar
  11. K.G. Wilson (private communication).Google Scholar
  12. 9.
    See, e.g., F.A. Berezin, The Method of Second Quantization (Academic, 1966).Google Scholar
  13. 10.
    See, e.g., J.R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics, (W.A. Benjamin, 1968), Chapter 7.Google Scholar
  14. 11.
    M. Ciafaloni and E. Onofri, Nucl. Phys. B151 (1979) 118;CrossRefADSMathSciNetGoogle Scholar
  15. E. Onofri, in Functional Integration, ed. J.-P. Antoine and E. Tirapegui (Plenum, 1980).Google Scholar
  16. W.F. Brinkman (private communication).Google Scholar
  17. 13.
    See, e.g., J.R. Klauder, J. Math. Phys. 4 (1963) 1058.CrossRefADSMathSciNetGoogle Scholar
  18. 14.
    J.R. Klauder, J. Math. Phys 23 (1982) 1797.CrossRefADSMathSciNetGoogle Scholar
  19. J.R. Klauder, “A Langevin Approach to Fermion and Quantum Spin Correlation Functions”, Bell Labs preprint.Google Scholar
  20. 15.
    P. Jordan and E. Wigner, Z. Physik 47 (1928) 631.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • John R. Klauder
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations