Introduction to Supersymmetry and Supergravity

  • H. Nicolai
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 25/1983)


Over the past years, we have witnessed a dramatic increase in “public interest” in supersymmetry and super gravity. This interest cannot as yet be based on any solid experimental facts, but it has nevertheless become clear that supersymmetry has many attractive features to offer and that it will probably play an important role in the ultimate unification of the fundamental particle interactions. This unification constitutes one of the most ambitious endeavors in theoretical physics, because it necessarily involves the extrapolation in energy over many Orders of magnitude where no experimental information is expected to become available. The main reason why supersymmetry and supergravity are so attractive is that, at the present time, there appear to be no other candidate theories that may enable us to simultaneously solve the three out standing problems of modern elementary particle physics.


Gauge Field Chiral Multiplet Supersymmetric Theory Internal Symmetry Fermionic Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wess and J. Bagger, “Supersy-metry and Supergravity” (Princeton University Press, 1982).Google Scholar
  2. 2.
    P. van Nieuwenhuizen, Phys. Rep. 68 (1981) 189.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D. Volkov and V.P. Akulov, Phys. Lett. 46B (1973) 109.ADSGoogle Scholar
  4. 4.
    J. Wess and B. Zumino, Nucl. Phys. B7O (1974) 39.Google Scholar
  5. 5.
    W. Nahm, V. Rittenberg and M. Scheunert, Phys. Lett. 61B (1976) 383.ADSMathSciNetGoogle Scholar
  6. 6.
    E. Witten, Nucl. Phys. B188 (1981) 513.CrossRefADSGoogle Scholar
  7. 7.
    R. Haag, J. Lopuszanski and M. Sohnius, Nucl. Phys. B88.(1975) 61MathSciNetGoogle Scholar
  8. 8.
    D.Z. Freedman, Irreducible Representations of Supersymmetry, in: “Recent Developments in Gravitation”, Cargèse 1978, eds. M. Levy and S. Deser (Plenum Press, 1979).Google Scholar
  9. 9.
    F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 256.ADSGoogle Scholar
  10. L. Brink, J. Schwarz and J. Scherk, Nucl. Phys. B121 (1977). 77.CrossRefADSMathSciNetGoogle Scholar
  11. 10.
    D.Z. Freedman and Wit, Nucl. Phys. B130 (1977) 105.ADSGoogle Scholar
  12. D.Z. Freedman and Wit, Nucl. Phys. B158 (1979) 189.Google Scholar
  13. D.Z. Freedman and Wit E. Cremmer and B. Julia, Phys. Lett. 80B (1978) 48.ADSGoogle Scholar
  14. D.Z. Freedman and Wit Nucl. Phys. B159 (1979) 141.Google Scholar
  15. D.Z. Freedman and Wit and H. Nicolai, Phys. Lett. 108B (1981) 285.Google Scholar
  16. D.Z. Freedman and Wit. Nucl. Phys. B208 (1982) 323.Google Scholar
  17. 11.
    S. Ferrara, C.A. Savoy and B. Zumino, Phys. Lett. 100B(1981)393ADSMathSciNetGoogle Scholar
  18. 12.
    P. Howe, H. Nicolai and A. Van Proeyen, Phys. Lett. 112B (1982) 446.ADSGoogle Scholar
  19. E. Bergshoeff, Roo and Wit, Nucl.Phys. B217 (1983)489.CrossRefADSGoogle Scholar
  20. 13.
    L. O’ Raifeartaigh, Nucl. Phys. B96 (1975) 331.CrossRefADSMathSciNetGoogle Scholar
  21. 14.
    E.g. M. Grisaru, W. Siegel and M. Roček, Nucl. Phys. B159 (1979) 420.ADSGoogle Scholar
  22. 15.
    J. Wess and B. Zumino, Phys. Lett. 49B (1974) 52.ADSGoogle Scholar
  23. J. Iliopoulos and B. Zumino, Nucl. Phys. B76 (1974) 310.CrossRefADSGoogle Scholar
  24. 16.
    E. Witten, Nucl. Phys. B188 (1981) 513.CrossRefADSGoogle Scholar
  25. S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150.CrossRefADSGoogle Scholar
  26. N. Sakai, Z. Phys. C11 (1982) 153.ADSGoogle Scholar
  27. 17.
    N.V. Krasnikov and H. Nicolai, Phys. Lett. 121B (1983) 259.ADSGoogle Scholar
  28. H. Nicolai, Phys. Lett. 89B (1980) 341ADSMathSciNetGoogle Scholar
  29. H. Nicolai, Phys. Lett 117B (1982) 408ADSMathSciNetGoogle Scholar
  30. H. Nicolai, Nucl. Phys. B176 (1980) 419.CrossRefADSMathSciNetGoogle Scholar
  31. 19.
    H. Nicolai, J. Phys. A9 (1976) 1497.ADSMathSciNetGoogle Scholar
  32. E. Witten, Nucl. Phys. B188 (1981) 513.CrossRefADSGoogle Scholar
  33. P. Salomonsen and J.W. van Holten, Nucl. Phys. B196 (1982) 509.CrossRefADSGoogle Scholar
  34. 20.
    F.A. Berezin, The Method of Second Quantization (Academic Press, N.Y., 1966).MATHGoogle Scholar
  35. 21.
    T. Matthews and A. Salam, Nuovo Cim. 12 (1954) 563; 21 (1955) 120.CrossRefMATHGoogle Scholar
  36. 22.
    S. Cecotti and L. Girardello, Phys. Lett. 110B (1982) 39; Harvard preprint HUTP-82/A013 (1982).Google Scholar
  37. 23.
    G. Parisi and N. Sourlas, preprint LPTENS 82/6 (1982).Google Scholar
  38. 24.
    M. Goltermann, Utrecht preprint (1982).Google Scholar
  39. 25.
    D.Z. Freedman, S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. D13 (1976) 3214.ADSGoogle Scholar
  40. S. Deser and B. Zumino, Phys. Lett. 62B (1976) 335.ADSMathSciNetGoogle Scholar
  41. 26.
    J. Ellis, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B202 (1982) 43.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • H. Nicolai
    • 1
  1. 1.CERNUSA

Personalised recommendations