Theoretical and Experimental Status of Quantumelectrodynamics

  • J. D. Björken
Conference paper
Part of the Supplementa book series (FEWBODY, volume 2/1965)


What we shall mean in these lectures by ‘‘quantum electrodynamics’’ is the study of electromagnetic interactions of electrons, µ-mesons, and photons with each other and with those external sources which ‘ can be understood phenomenologically. It is therefore worthwhile to try to delimit the expected domain of validity of this (narrowly-defined) theory. On the large-distance side, it is probably only gravitation which gets in the way; on the small-distance side, the strong interactions (via vacuum polarization effects) and, in a more serious way, weak interactions. To estimate the breakdown-distance, we may calculate, for example, “weak” corrections to the process of e + e pair annihilation. In a point Fermi theory, the graph ô ℳ goes something like
$$\frac{{\delta M}}{M}\sim \{ _{{{G^{2}}{E_{{C{M^{4}}}}}(?)}}^{{{G^{2}}{\Lambda ^{2}}{E_{{C{M^{2}}}}}(?)}} $$
with the weak interaction cutoff (a la Ioffe [1]) A300 BeV: Thus when G Ecm 2 ~1, or E C m ~ 300 BeV, the weak corrections become important.


Pair Production Ward Identity Quantum Electrodynamic Vertex Function Lamb Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ioffe, Proc. 1960 Conf. on High Energy Physics, p. 561.Google Scholar
  2. 2.
    We obtain this by using crossing symmetry on the result of Bludman and Young for Compton scattering of a if: Phys. Rev. 126, 303 (1962).Google Scholar
  3. 3.
    For example, α/π log 2 lm e 2 < 0.1 with A < 300 BeV.Google Scholar
  4. 4.
    Andreassi, Budint, Furlan, Phys. Rev. Letters 8, 184 (1962).Google Scholar
  5. 5.
    T. D. Lee, Phys. Rev. 128, 899 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    R. Delbourgo and A. Salam, Phys. Rev. 135, 1398 (1964).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Alväger, Farley, Kjellman, Wallin, Phys. Lett. 12, 260 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    Charpak, Farley, Garwin, Müller, Sens, Zichichi, Nuovo Cim. 22, 1043 (1961).CrossRefGoogle Scholar
  9. 9.
    Wilkinson, Crane, Phys. Rev. 130, 852 (1963).Google Scholar
  10. 10.
    Burleson and Kendall, Nucl. Phys. 19, 68 (1960).CrossRefGoogle Scholar
  11. Goldemberg and Torizuka, Phys. Rev. 129, 2580 (1963).ADSCrossRefGoogle Scholar
  12. Rand and Hofstadter, Stanford preprint.Google Scholar
  13. 11.
    Charpak et al. Phys. Letters, 1, 16 (1962).ADSGoogle Scholar
  14. Lathrop, Lundy, Penman, Telerdi, Winston, Yovanovitch, Bearden, Nuovo Cim, 17, 114 (1960).CrossRefGoogle Scholar
  15. Devons, Gidal, Lederman, Shapiro, Phys. Rev. Lett. 5, 330 (1960).ADSCrossRefGoogle Scholar
  16. 12.
    A. Peterson, private communication via H. W. Kendall.Google Scholar
  17. 13.
    H. Casimir, Proc. kon. Ned. Akad. Wetenshap 51, 793 (1948).MATHGoogle Scholar
  18. M. Fierz, Helv. Phys. Acta 33, 855 (1960), has calculated temperature-dependent effects.MathSciNetGoogle Scholar
  19. 14.
    M. Sparnaay, Physica 24, 751 (1958).ADSCrossRefGoogle Scholar
  20. 15.
    S. Drell, An. of Phys. (N. Y.) 4, 75 (1958).ADSMATHCrossRefGoogle Scholar
  21. 16.
    Wilkinson and Crane, op. cit.Google Scholar
  22. 17.
    L. Durand III, Phys. Rev. 128, 441 (1962).MathSciNetADSCrossRefGoogle Scholar
  23. 18.
    Drell and Pagels, to be published.Google Scholar
  24. 19.
    Charpak, Farley, Garwin, Müller, Sens, Zichichi, CERN preprint, 1964.Google Scholar
  25. 20.
    R. P. Feynman, Proc. Solvay Conf. 1962.Google Scholar
  26. 21.
    Platzman and Iddings, Phys. Rev. 115, 919 (1959).ADSCrossRefGoogle Scholar
  27. C. K. Iddings, Stanford preprint.Google Scholar
  28. 22.
    W. N. Cottingham, Annals of Phys. (N. Y.) 25, 424 (1963).ADSCrossRefGoogle Scholar
  29. 23.
    Cohen, Crowe, du Mond, The Fundamental Constants of Physics, Inter-science, N. Y. (1957).Google Scholar
  30. 24.
    V. Hughes, report to 1963 Stanford conference: Hofstadter and Schiff, Nucleon Structure, Stanford press.Google Scholar
  31. Cleland, Bailey, Eckhause, Hughes, Mobley, Prepost and Rothenberg, Phys. Rev. Letters 13, 202 (1964).ADSCrossRefGoogle Scholar
  32. 25.
    To use an electron magnetic moment measurement to improve a requires, in addition to a more accurate g — 2 experiment, improvement of the measurement of the proton gyromagnetic ratio, used in mapping the magnetic field in the experiment. See Wilkinson and Crane, op. cit.Google Scholar
  33. 26.
    B. Richter, private communication.Google Scholar
  34. 27.
    S. Drell, op. cit.Google Scholar
  35. Hand, Miller and Wilson, Revs. Mod. Phys. 35, 335 (1963).ADSCrossRefGoogle Scholar
  36. 28.
    Masek, Ewart, Toutonghi and Williams, Phys. Rev. Lett. 10, 35 (1963).ADSCrossRefGoogle Scholar
  37. 29.
    Ellsworth, Melissinos, Tinlot, Yamanouchi, Lederman, Tannenbaum, Cool, Maschke, Bull. Am. Phys. Soc. 10, 80 (1965), and 1964 Dubna conference proceedings.Google Scholar
  38. 30.
    Citron, Delorme, Fries, Goldzahl, Heintze, Michaelis, Richard, Overäs Phys. Lett. 1, 175 (1962).ADSCrossRefGoogle Scholar
  39. 31.
    Proceed, of 1963 Siena Conference, . 1964 Dubna conference proceedings.Google Scholar
  40. 32.
    Browman and Pine, Nucleon Structure, op. cit.Google Scholar
  41. 33.
    Buon, Siena Converence Proceedings.Google Scholar
  42. 34.
    B. Richter, Phys. Rev. Lett. 1, 114, (1958).ADSCrossRefGoogle Scholar
  43. 35.
    Albergi-Quaranta, de Pretis, Marini, Odian, Stoppini, and Tan, Phys. Rev. Lett. 9, 226 (1962).ADSCrossRefGoogle Scholar
  44. 36.
    de Pagter, Boyarski, Glass, Friedman, Kendall, Gettner, Larrabee and Weinstein, Phys. Rev. Lett. 12, 739 (1964).ADSCrossRefGoogle Scholar
  45. 37.
    R. B. Blumenthal, D. C. Ehn, W. L. Faissler, P. M. Joseph,Google Scholar
  46. L. J. Lanzerotti, F. M. Pipkin and D. G. Stairs, Phys. Rev. Lett. 14, 660 (1965).ADSCrossRefGoogle Scholar
  47. 38.
    Cf. footnote in Björken, Drell, a. Frautschi, Phys. Rev. 112, 1409 (1958).ADSMATHCrossRefGoogle Scholar
  48. 39.
    If the cutoff were some multiple of the lepton mass in question, this would not be the case. But that seems a little unlikely.Google Scholar
  49. 40.
    S. Drell, Phys. Rev. Lett. 13, 257 (1964).ADSCrossRefGoogle Scholar
  50. 41.
    F. Low, Phys. Rev. Lett. 14, 238 (1965).MathSciNetADSCrossRefGoogle Scholar
  51. 42.
    L. Lederman, F. J. M. Farley, private communications.Google Scholar
  52. 43.
    Boson systems coupled to the µ have been discussed rather extensively.Google Scholar
  53. 44.
    H. W. Kendall, private communication.Google Scholar
  54. 1.
    The idea is due to M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954). We follow the method of Bogoliubov and Shirkov, “Introduction to the theory of Quantized Fields”, Interscience, New York, 1959.MathSciNetADSMATHCrossRefGoogle Scholar
  55. 2.
    Jost and Luttinger, Helv. Phys. Acta 23, 201 (1950).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 1965

Authors and Affiliations

  • J. D. Björken
    • 1
  1. 1.StanfordUSA

Personalised recommendations