High Energy Quantum Electrodynamics I

  • H. Mitter
Conference paper
Part of the Supplementa book series (FEWBODY, volume 2/1965)


Quantum electrodynamics is up to the present day the only example of a quantised field theory the predictions of which agree with experiment to a high degree of precision. In the following lecture we shall adopt the somewhat optimistic standpoint, that this agreement is not accidential and that it is therefore worthwile to spend time on explaining the formal structure of the theory also in regions, where the connection with the experiment is not a close one. We shall along with it stress the field aspect: we shall study expectation values of products of field operators (Green’s functions), which are the quantum analog to classical field functions, and shall study these Green’s functions as response functions to small, external perturbations: the analogy to the classical concept of a field strength and test charge is evident.


Perturbation Theory Gauge Transformation Functional Differentiation Renormalization Constant Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Jauch, F. Rohrlich, The Theory of Photons and Electrons, Addison-Wesley, Cambridge 1954.Google Scholar
  2. 2.
    P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 150 (1934).ADSCrossRefGoogle Scholar
  3. 3.
    W. Heisenberg, Zs. f. Phys. 90, 209 and 92, 692 (1934).ADSMATHCrossRefGoogle Scholar
  4. 4.
    J. G. Valatin, Proc. Roy. Soc. A 222, 93 and 228 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    J. Schwinger, Phys. Rev. Lett. 3, 296 (1959).ADSCrossRefGoogle Scholar
  6. 6.
    B. Zumino, Journ. Math. Phys. 1, 1 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    H. M. Fried, D. R. Yennie, Phys. Rev. 112, 1391 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    L. D. Landau, A. A. Abrikosov, I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 95, 773 (1954).Google Scholar
  9. 9.
    J. Schwinger, Proc. Nat. Acad. Sci. 37, 452 and 455 (1951).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    F. J. Dyson, Phys. Rev. 75, 1736 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Y. Takahashi, N. Cim. 6, 370 (1957).Google Scholar
  12. 12.
    J. C. Ward, Phys. Rev. 78, 182 (1950).ADSMATHCrossRefGoogle Scholar
  13. 13.
    H. Lehmann, N. Cim. 11, 342 (1954).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    K. Johnson, B. Zumino, Phys. Rev. Lett. 3, 351 (1959).ADSMATHCrossRefGoogle Scholar
  15. 15.
    M. Gell-Mann, F. Low, Phys. Rev. 95, 1300 (1954).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 1965

Authors and Affiliations

  • H. Mitter
    • 1
  1. 1.Max Plank Institut für Physik und AstrophysikMünchenGermany

Personalised recommendations