An Introduction to Theories of Integration over Function Spaces

  • L. Streit
Part of the Supplementa book series (FEWBODY, volume 2/1965)


To begin with let me say some words about what the talk I am going to give is aiming at. In theoretical physics one happens again and again and in a great variety of fields upon functional formulations. The idea to use functional calculus for the description of physical systems depending on an infinite number of variables dates back to a paper written already in 1914 by Volterra [Volterra 1914], where he proposed to make use of a functional formulation for the dynamics of many particle systems and continuous media.


Hilbert Space Function Space Functional Calculus Separable Hilbert Space Feynman Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. G. Babbitt, A summation procedure for certain Feynman integrals. Journ. Math. Phys. 4, 36 (1963).MathSciNetADSCrossRefGoogle Scholar
  2. S. G. Brush, Functional integrals and statistical physics. Rev. Mod. Phys. 33, 79 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  3. R. H. Cameron, W. T. Martin, Transformation of Wiener integrals under a general class of linear transformations. Trans. Amer. Math. Soc. 58, 184 (1945).MathSciNetMATHGoogle Scholar
  4. R. H. Cameron, W. T. Martin, Fourier-Wiener transform of analytic functionals. Duke Math. J. 12, 489 (1945 a).MathSciNetMATHCrossRefGoogle Scholar
  5. R. H. Cameron, W. T. Martin, Fourier transforms of functionals belonging to L 2 over the space C. Duke Math. J. 14, 99 (1947).MathSciNetMATHCrossRefGoogle Scholar
  6. R. H. Cameron, W. T. Martin, The transformation of Wiener integrals by nonlinear transformations. Trans. Amer. Math. Soc. 66, 253 (1949).MathSciNetMATHCrossRefGoogle Scholar
  7. R. H. Cameron, R. E. Graves, Additive functionals on a space of continuous functions. Trans. Amer. Math. Soc. 70, 160 (1951).MathSciNetMATHCrossRefGoogle Scholar
  8. R. H. Cameron, The first variation of an indefinite Wiener integral. Proc. Amer. Math. Soc. 2, 914 (1951a).MathSciNetMATHCrossRefGoogle Scholar
  9. R. H. Cameron, A Simpson’s rule for the numerical evaluation of Wiener’s integrals in function space. Duke Math. J. 18, 111 (1951 b).MathSciNetMATHCrossRefGoogle Scholar
  10. R. H. Cameron, R. E. Fagen, Nonlinear transformations of Volterra type in Wiener space. Trans. Amer. Soc. 75, 552 (1953).MathSciNetMATHCrossRefGoogle Scholar
  11. R. H. Cameron, The translation pathology of Wiener space. Duke Math. J. 21, 623 (1954).MathSciNetMATHCrossRefGoogle Scholar
  12. R. H. Cameron, The generalized heat flow equation and a corresponding Poisson formula. Ann. of Math. (2) 59, 434 (1954 a).MathSciNetMATHCrossRefGoogle Scholar
  13. R. H. Cameron, Nonlinear Volterra functional equations and linear parabolic differential systems. J. Analyse Math. 5, 136 (1956).MathSciNetCrossRefGoogle Scholar
  14. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals. J. Math, and Phys. 39, 126 (1960).MathSciNetMATHGoogle Scholar
  15. R. H. Cameron, The Ilstow and Feynman integrals. J. Analyse Math. 10, 287 (1963).MathSciNetMATHCrossRefGoogle Scholar
  16. F. Coester, R. Haag, Representation of states in a field theory with canonical variables. Phys. Rev. 117, 1137 (1960).MathSciNetADSCrossRefGoogle Scholar
  17. J. L. Daletskii, On the representation of the solutions of operator equations in the form of continuous integrals. Dokl. Akad. Nauk 134, 1013 (1960).Google Scholar
  18. J. L. Daletskii, Continuous integrals connected with certain differential equations. Dokl. Akad. Nauk 137, 268 (1961).Google Scholar
  19. J. L. Daletskii, Continuous integrals and characteristics connected with a group of operators. Dokl. Akad. Nauk 141, 1290 (1961 a).Google Scholar
  20. N. Dunford, J. Schwartz, Linear operators I, p. 402 ff. Interscience New York (1958).MATHGoogle Scholar
  21. R. P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  22. R. P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97, 660 (1955).ADSMATHCrossRefGoogle Scholar
  23. S. V. Fomin, On the inclusion of the Wiener integral in general Lebesque integral theory. Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki 2, 83 (1958).Google Scholar
  24. K. O. Friedrichs, H. N. Shapiro, Integration over Hubert space and outer extensions. Proc. Math. Acad. Sci. U.S. 43, 336 (1951).MathSciNetADSCrossRefGoogle Scholar
  25. K. O. Friedrichs, Mathematical aspects of the quantum theory of fields. Inter-science, New York (1953).MATHGoogle Scholar
  26. K. O. Friedrichs, H. N. Shapiro et al., Integration of functionals. CIMS seminar notes, New York University (1957).Google Scholar
  27. K. O. Friedrichs, Remarques sur l’intégration des fonctionelles dans l’espace d’Hilbert. (Les problèmes mathématiques de la théorie quantique des champs. Paris 1959, p. 139.)Google Scholar
  28. L. Garding, A. Wightman, Representations of the commutation relations. Proc. Nat. Acad. Sci. U.S. 40, 622 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  29. L. Garding, A. Wightman, Representation of the anticommutation relations. Proc. Nat. Acad. Sci. U.S. 40, 617 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  30. J. M. Gelfand, N. N. Chentsov, On the numerical computation of continuous integrals. JETP 31, 1106 (1956).Google Scholar
  31. J. M. Gelfand, A. M. Yaglom, Integration in functional spaces and its application in quantum physics. Journ. Math. Phys. 1, 48 (1960).ADSCrossRefGoogle Scholar
  32. J. M. Gelfand, N. J. Wilenkin, Verallgemeinerte Funktionen, Bd. IV. (Hochschulbücher für Mathematik Bd. 50, Berlin, 1964).Google Scholar
  33. L. Gross, Integration and nonlinear transformations in Hilbert space. Trans. Amer. Math. Soc. 94, 404 (1960).MathSciNetMATHCrossRefGoogle Scholar
  34. L. Gross, Measurable functions on Hilbert space. Trans. Amer. Math. Soc. 105, 372 (1962).MathSciNetMATHCrossRefGoogle Scholar
  35. L. Gross. Harmonic analysis on Hilbert space. Memoire Amer. Math. Soc. No. 46 (1963).Google Scholar
  36. R. Haag, Canonical commutation relations in field theory and functional integration in Lectures in theoretical physics. Vol. III, Boulder 1960, p. 353.Google Scholar
  37. M. Kac, Probability and related topics in physical science. (Interscience, London, 1959: Lectures in applied mathematics Vol. I).Google Scholar
  38. J. M. Kovalchik, The Wiener integral. Russian Math. Surveys 18, 97 (1963).ADSCrossRefGoogle Scholar
  39. E. V. Maikov, On the inequivalence of two definitions of continuous integral. Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauk. 3, 85 (1958).Google Scholar
  40. G. Maruyama, Notes on Wiener integrals. Kodai Math. Sem. Rep., p. 41 (1950).Google Scholar
  41. E. J. McShane, Integrals devised for special purposes. Bull. Amer. Math. Soc. 69, 597 (1963).MathSciNetMATHCrossRefGoogle Scholar
  42. B. S. Mitjagin, Eine Bemerkung über die quasiinvarianten Maße. Uspekhi Mat. Nauk. 26: 5 (101), 191, (1961).Google Scholar
  43. E. W. Montroll, Markoff chains, Wiener integrals, and quantum theory. Comm. Pure Appl. Math. V, p. 415 (1952).MathSciNetCrossRefGoogle Scholar
  44. C. Morette, On the definition and approximation of Feynman’s path integrals. Phys. Rev. 81, 848 (1950).MathSciNetADSCrossRefGoogle Scholar
  45. E. Nelson, Feynman integrals and the Schrödinger equation. Journ. Math. Phys. 5, 332 (1964).ADSMATHCrossRefGoogle Scholar
  46. T. G. Ostrom, The solution of linear equations by means of Wiener integrals. Bull. Amer. Math. Soc. 55, 343 (1949).MathSciNetCrossRefGoogle Scholar
  47. R. E. Paley, N. Wiener, Fourier-transforms in the complex domain. Amer. Math. Soc. Colloquium Publications XIX (1930).Google Scholar
  48. D. Ray, On spectra of second order differential operators. Trans. Amer. Math. Soc. 77, 299 (1954).MathSciNetMATHCrossRefGoogle Scholar
  49. F. Rohrlich, Functional differential calculus of operators. Journ. Math. Phys. 5, 324 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  50. Gerald Rosen, Approximate evaluation of Feynman functional integrals. J. Math. Phys. 4, 1327 (1963).ADSCrossRefGoogle Scholar
  51. S. S. Schweber, On Feynman quantization. Journ. Math. Phys. 8, 831 (1962).MathSciNetADSCrossRefGoogle Scholar
  52. J. E. Segal, Ann. Math. 57, 401 (1953).MATHCrossRefGoogle Scholar
  53. J. E. Segal, Tensor algebras over Hilbert spaces. Trans. Amer. Math. Soc. 81, 106 (1964).CrossRefGoogle Scholar
  54. J. E. Segal, Distributions in Hilbert space and canonical systems of operators. Trans. Amer. Math. Soc. 88, 12 (1958).MathSciNetMATHCrossRefGoogle Scholar
  55. J. E. Segal, Characterisation mathématique des observables en théorie quantique des champs et ses consequences pour la structure des particules libres. (Les problèmes mathématiques de la théorie des champs. Paris 1959, p. 57.)Google Scholar
  56. T. J. Seidman, Linear transformations of a functional integral. Comm. Pure Appl. Math. 12, 611 (1959).MathSciNetCrossRefGoogle Scholar
  57. N. N. Sudakow, Lineare Mengen mit quasiinvariantem Maß. Dokl. Akad. Nauk SSSR 127, 524 (1959).MathSciNetGoogle Scholar
  58. G. Sunoüchi, Harmonie analysis and Wiener integrals. Tohoku Math. J. (2) 3, 187 (1951).MathSciNetCrossRefGoogle Scholar
  59. K. Symanzik, Über das Schwingersche Funktional in der Feldtheorie. Zeitschr. f. Naturforschung 9, 809 (1954).MathSciNetADSMATHGoogle Scholar
  60. K. Symanzik, A modified model of Euclidean quantum field theory. NYU-preprint JMM-NYU 327 (1964).Google Scholar
  61. V. S. Vladimirov, The approximate evaluation of Wiener integrals. Uspekhi Mat. Nauk 15, No. 4 (94), p. 129 (1960).MATHGoogle Scholar
  62. V. Volterra, Les problèmes qui resortent du concept de fonction de ligne. Sitzgsber. Berliner Math. Gesellsch. XIII. Jg. 6. Sitzg. 1914.Google Scholar
  63. V. Volterra, Theory of functionals and of integral and integro-differential equations (1930).MATHGoogle Scholar
  64. D. A. Woodward, A general class of linear transformations of Wiener integrals. Trans. Amer. Math. Soc. 100, 459 (1960).MathSciNetCrossRefGoogle Scholar
  65. J. Yeh, Nonlinear Volterra functional equations and linear parabolic differential systems. Trans. Amer. Math. Soc. 95, 408 (1960).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 1965

Authors and Affiliations

  • L. Streit
    • 1
  1. 1.Universität HamburgGermany

Personalised recommendations