Skip to main content

Theories with Gauge Groups

  • Conference paper
Quantum Electrodynamics

Part of the book series: Supplementa ((FEWBODY,volume 2/1965))

Abstract

The success of quantum electrodynamics suggests the investigation of theories constructed in analogy with it. The gauge invariance of second kind with variable phase functions can be viewed as a generalization of the gauge invariance of first kind (with constant phase) which forces the introduction of the electromagnetic potential, so that the gauge transformation on the matter field can be cancelled by the gauge transformation of the potential. In this way, the generalization of the gauge transformation to a coordinate dependent transformation can be taken as the principle generating the electromagnetic field. This point of view has been applied (Yang-Mills [1]) to the group of isospin transformations of a nucleon field. When these transformations are made coordinate dependent, one is led to introduce a vector field, the b field, which is both a Lorentz vector and an isospin vector, and which is the analogue of the electromagnetic potential. The theory of Yang and Mills is described in Section 3 after a brief review of electrodynamics, given in Section 2.

Lecture given at the IV. Internationale Universitätswochen für Kernphysik, Schladming, 25 February–10 March 1965.

This work was supported in part by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Beferenees

  1. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Schwinger, Phys. Rev. 125, 1043 (1962);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Schwinger, Phys. Rev. 127, 324 (1962);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Schwinger, Phys. Rev. 130, 402 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Utiyama, Phys. Rev. 101, 1597 (1956). See also

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Gell-Mann and S. Glas-how, Ann. Phys. (New York) 15, 437 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. J. Sakurai, Ann. Phys. (New York) 11, 1 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Schwinger, Phys. Rev. 125, 397 (1962);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. Schwinger, Phys. Rev. 128, 2425 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Gell-Mann, Physics Letters 8, 214 (1964).

    Article  ADS  Google Scholar 

  12. G. Zweig, CERN Report (1964).

    Google Scholar 

  13. J. Schwinger, Phys. Rev. 135, B 816 (1964);

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Schwinger, Phys. Rev. 136, B 1821 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. T. D. Lee, F. Gursey, M. Nauenberg, Phys. Rev. 135, B 467 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Zumino, J. Math. Phys. 1, 1 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Y. P. Yao, J. Math. Phys. 5, 1319 (1964).

    Article  ADS  Google Scholar 

  18. Unpublished remarks by R. P. Feynman. See also B. DeWitt, Phys. Rev. Letters 12, 742 (1964).

    Google Scholar 

  19. C. N. Yang and T. D. Lee, Phys. Rev. 98, 1501 (1955).

    Article  ADS  Google Scholar 

  20. See, e.g., G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 (1963); ibid

    Article  MathSciNet  ADS  Google Scholar 

  21. 132, 823 (1963); *See, e.g., G. Feldman and P. T. Matthews, , Phys. Rev.

    Article  MathSciNet  ADS  Google Scholar 

  22. Y. Fujii and S. Kamefuchi, Nuovo Cimento 33, 1639 (1964).

    Article  MathSciNet  Google Scholar 

  23. E. C. G. Stückelberg, Helv. Phys. Acta 11, 299 (1938).

    Google Scholar 

  24. It must be admitted that the difference between essential and spurious gauge groups is not defined above in a completely satisfactory manner. Nevertheless, such a distinction clearly exists.

    Google Scholar 

  25. L. S. Brown, Nuovo Cimento 29, 617 (1963).

    Article  Google Scholar 

  26. B. Zumino, SPI1962 Eastern Theoretical Physics Conference, edited by M. E. Rose, Gordon and Breach Publishers, New York (1963);

    Google Scholar 

  27. B. Zumino Phys. Lett. 10, 224 (1964).

    Article  ADS  Google Scholar 

  28. K. Johnson, Theoretical Physics (Trieste Seminar directed by A. Salam), International Atomic Energy Agency, Vienna 1963.

    Google Scholar 

  29. V. I. Ogievetskij and I. V. Polubarinov, Ann Phys. (New York) 25, 358 (1963).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer Science + Business Media, LLC

About this paper

Cite this paper

Zumino, B. (1965). Theories with Gauge Groups. In: Urban, P. (eds) Quantum Electrodynamics. Supplementa, vol 2/1965. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7649-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7649-8_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-80734-7

  • Online ISBN: 978-3-7091-7649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics