Advertisement

Theories with Gauge Groups

  • Bruno Zumino
Conference paper
Part of the Supplementa book series (FEWBODY, volume 2/1965)

Abstract

The success of quantum electrodynamics suggests the investigation of theories constructed in analogy with it. The gauge invariance of second kind with variable phase functions can be viewed as a generalization of the gauge invariance of first kind (with constant phase) which forces the introduction of the electromagnetic potential, so that the gauge transformation on the matter field can be cancelled by the gauge transformation of the potential. In this way, the generalization of the gauge transformation to a coordinate dependent transformation can be taken as the principle generating the electromagnetic field. This point of view has been applied (Yang-Mills [1]) to the group of isospin transformations of a nucleon field. When these transformations are made coordinate dependent, one is led to introduce a vector field, the b field, which is both a Lorentz vector and an isospin vector, and which is the analogue of the electromagnetic potential. The theory of Yang and Mills is described in Section 3 after a brief review of electrodynamics, given in Section 2.

Keywords

Gauge Group Field Equation Gauge Transformation Vector Meson Gauge Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Beferenees

  1. 1.
    C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 (1954).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. Schwinger, Phys. Rev. 125, 1043 (1962);MathSciNetADSMATHCrossRefGoogle Scholar
  4. 3a.
    J. Schwinger, Phys. Rev. 127, 324 (1962);MathSciNetADSMATHCrossRefGoogle Scholar
  5. 3b.
    J. Schwinger, Phys. Rev. 130, 402 (1962).MathSciNetADSCrossRefGoogle Scholar
  6. 4.
    R. Utiyama, Phys. Rev. 101, 1597 (1956). See alsoMathSciNetADSMATHCrossRefGoogle Scholar
  7. 4a.
    M. Gell-Mann and S. Glas-how, Ann. Phys. (New York) 15, 437 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 5.
    J. J. Sakurai, Ann. Phys. (New York) 11, 1 (1960).MathSciNetADSCrossRefGoogle Scholar
  9. 6.
    J. Schwinger, Phys. Rev. 125, 397 (1962);MathSciNetADSMATHCrossRefGoogle Scholar
  10. 6a.
    J. Schwinger, Phys. Rev. 128, 2425 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 7.
    M. Gell-Mann, Physics Letters 8, 214 (1964).ADSCrossRefGoogle Scholar
  12. 8.
    G. Zweig, CERN Report (1964).Google Scholar
  13. 9.
    J. Schwinger, Phys. Rev. 135, B 816 (1964);MathSciNetADSCrossRefGoogle Scholar
  14. 9a.
    J. Schwinger, Phys. Rev. 136, B 1821 (1964).MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    T. D. Lee, F. Gursey, M. Nauenberg, Phys. Rev. 135, B 467 (1964).MathSciNetADSCrossRefGoogle Scholar
  16. 11.
    B. Zumino, J. Math. Phys. 1, 1 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 12.
    Y. P. Yao, J. Math. Phys. 5, 1319 (1964).ADSCrossRefGoogle Scholar
  18. 13.
    Unpublished remarks by R. P. Feynman. See also B. DeWitt, Phys. Rev. Letters 12, 742 (1964).Google Scholar
  19. 14.
    C. N. Yang and T. D. Lee, Phys. Rev. 98, 1501 (1955).ADSCrossRefGoogle Scholar
  20. 15.
    See, e.g., G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 (1963); ibidMathSciNetADSCrossRefGoogle Scholar
  21. 15a.
    132, 823 (1963); *See, e.g., G. Feldman and P. T. Matthews, , Phys. Rev.MathSciNetADSCrossRefGoogle Scholar
  22. 15b.
    Y. Fujii and S. Kamefuchi, Nuovo Cimento 33, 1639 (1964).MathSciNetCrossRefGoogle Scholar
  23. 16.
    E. C. G. Stückelberg, Helv. Phys. Acta 11, 299 (1938).Google Scholar
  24. 17.
    It must be admitted that the difference between essential and spurious gauge groups is not defined above in a completely satisfactory manner. Nevertheless, such a distinction clearly exists.Google Scholar
  25. 18.
    L. S. Brown, Nuovo Cimento 29, 617 (1963).CrossRefGoogle Scholar
  26. 19.
    B. Zumino, SPI1962 Eastern Theoretical Physics Conference, edited by M. E. Rose, Gordon and Breach Publishers, New York (1963);Google Scholar
  27. 19a.
    B. Zumino Phys. Lett. 10, 224 (1964).ADSCrossRefGoogle Scholar
  28. 20.
    K. Johnson, Theoretical Physics (Trieste Seminar directed by A. Salam), International Atomic Energy Agency, Vienna 1963.Google Scholar
  29. 21.
    V. I. Ogievetskij and I. V. Polubarinov, Ann Phys. (New York) 25, 358 (1963).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 1965

Authors and Affiliations

  • Bruno Zumino
    • 1
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations