Skip to main content

S-Matrix Theory of Electromagnetic Interactions

With Topics in Weak and Gravitational Interactions

  • Conference paper
Quantum Electrodynamics

Part of the book series: Supplementa ((FEWBODY,volume 2/1965))

  • 190 Accesses

Abstract

The S-matrix theory, as we see it, is a relativistic formulation of interactions of fundamental particles based on their particle properties (not fields), that is, the formulation of the laws of physics in terms of the c-number scattering matrix elements. The scattering matrix itself is defined in terms of the (free physical) particle properties such as momenta, spin, and other quantum numbers which are numbers labelling the representations and states of symmetry groups. We shall give a precise mathematical definition of “particles” and of “scattering”. There is no need to make a fundamental distinction between the S-matrix theory and the relativistic quantum field theory as they both essentially lead to the same results. In one case the basic analyticity properties of the S-matrix are (partly) derived from field axioms and perturbation theory, and in the other case, partly from unitarity condition and are partly postulated. The difference at this stage is perhaps a practical and didactic one; the S-matrix approach is a more direct, computationally and conceptually simple one, using only quantities very close to observed ones.

Lecture given at the IV. Internationale Universitätswochen für Kernphysik, Schladming, 25 February–10 March 1965.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. This question has often been answered in the negative; see for example, G. F. Chew, Science Progress, 51, 529 (1963),

    Google Scholar 

  2. P. V. Landshoff, The S-Matrix Theory without Field Theory, Cambridge Lecture notes, 1964 (unpublished).

    Google Scholar 

  3. We follow here a group theoretical specification of the S-matrix; the Hubert space being explicitly given by the direct sum of the representation spaces of the symmetry groups. The kinematical framework is thus the same as in quantum field theory. All properties of the S-matrix, including C, P, T and spin-statistics will be obtained from the corresponding unitary representations. See also A. O. Barut, The Framework of S-Matrix Theory, in Strong Interactions and High Energy Physics, Oliver and Boyd, Edinburgh 1964, and references therein. See also

    Google Scholar 

  4. H. Joos, Fortschritte der Physik 10, 3 (1962).

    Google Scholar 

  5. G. C. Wick, A. S. Wightman, E. P. Wigner, Phys. Rev. 83, 101 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 2264 (1962);

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Froissart, M. L. Goldberger and K. M. Watson, Phys. Rev. 131, 2820 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. P. Wigner, Ann. Math. 40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  9. A. S. Wightman in Dispersion Relations and Elementary Particle Physics, ed. by C. de Witt (John Wiley Sons, Inc., New York, 1960).

    Google Scholar 

  10. There are also infinite dimensional representations of E 2 (E. P. Wigner, in Theoretical Physics, International Atomic Energy Agency, Vienna, 1963). But these are not realized for free particles.

    Google Scholar 

  11. D. Zwanziger, Phys. Rev. 133, B 1056 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  12. Unstable particles have also been represented by non-unitary representations of the Poincaré group with a complex energy momentum vector. D. Zwanziger, Phys. Rev. 131, 2818 (1963); E. G. Beltrametti and G. Luzzatto (preprint).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. This proof was given in A. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev. 130, 442 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. For a detailed discussion of invariant amplitudes and in particular the problem of kinematical singularities see K. Hepp, Helv. Physica Acta 36, 355 (1963) ;

    MathSciNet  MATH  Google Scholar 

  15. K. Hepp, Helv. Physica Acta 37, 55 (1964) ;

    MathSciNet  MATH  Google Scholar 

  16. D. N. Williams, Lawrence Radiation Lab. Report UCRL-11113, Berkeley 1965; H. Joos, Forts, d. Phys. 10, 3 (1962) and reference [9].

    Google Scholar 

  17. R. Jost, Helv. Physica Acta 30, 409 (1947).

    MathSciNet  Google Scholar 

  18. H. P. Stapp, Phys. Rev. 128, 2139 (1962).

    Article  ADS  Google Scholar 

  19. For a recent discussion of extended unitarity see J. B. Boyling, Nuovo Cimento 33, 1356 (1964) and references therein.

    Article  MathSciNet  Google Scholar 

  20. D. I. Olive, Phys. Rev. 135, B 745 (1964);

    Article  MathSciNet  ADS  Google Scholar 

  21. H. P. Stapp, Lectures on S-Matrix Theory, to be published by the International Centre for Theoretical Physics, in 1965.

    Google Scholar 

  22. G. A. O. Källen, in Elementary Particle Physics and Field Theory, K. W. Ford, editor (W. A. Benjamin, New York 1961), and references therein.

    Google Scholar 

  23. K. Nishijima, Fundamental Particles (W. A. Benjamin, New York 1963).

    Google Scholar 

  24. A. Petermann, Helv. Phys. Acta 36, 942 (1963).

    Google Scholar 

  25. D. Zwanziger, in Proceedings of the Symposium on the Lorentz Group, University of Colorado Press, Boulder, 1965.

    Google Scholar 

  26. L. Landau, Doklady 60, 207 (1948);

    Google Scholar 

  27. C. N. Yang, Phys. Rev. 77, 242(1950).

    Google Scholar 

    Google Scholar 

  28. For a recent discussion of infrared corrections see, for example, D. R. Yennie, S. C. Frautschi and H. Suura, Ann. of Physics 13, 379 (1961).

    Article  ADS  Google Scholar 

  29. We follow here essentially A. O. Barut and R. Blade, Nuovo Cimento 39, 331 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  30. See, for example, J. M. Jauch and F. Rohrlich, The Theory of Electrons and Photons, Addison-Wesley Publishing Co., Cambridge, 1953, p. 229.

    Google Scholar 

  31. In fact if one starts from the dispersion relation for a scattering process (for all s and t) one can derive a dispersion relation for the form factor onfy if one neglects the crossed channels [see H. P. Stapp, UCRL 11766, part IV]. This seems then to pose a problem how the double dispersion relations are compatible with the dispersion relations for form factors.

    Google Scholar 

  32. The derivation based on the pole approximation of Fig. 11 was first given by S. Weinberg, Physics Letters 9, 357 (1964).

    Google Scholar 

  33. For the derivation of the conservation of form factors (3.57), see A. O. Barut, Physics Letters 10, 356 (1964).

    Google Scholar 

  34. J. Lettner and S. Okubo, Phys. Rev. 136, B 1542 (1964); K. Hiida and Y. Yamaguchi, Prog. Theor. Physics (1965).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer Science + Business Media, LLC

About this paper

Cite this paper

Barut, A.O. (1965). S-Matrix Theory of Electromagnetic Interactions. In: Urban, P. (eds) Quantum Electrodynamics. Supplementa, vol 2/1965. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7649-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7649-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-80734-7

  • Online ISBN: 978-3-7091-7649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics