Advertisement

Hamiltonian Approach to Quantum Field Theory

  • John R. Klauder
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 6/1969)

Abstract

In these notes I should like to discuss some general features of a Hamiltonian quantum field theory, as well as to present some recent results regarding existence questions for certain model field theories. Especially exciting among these recent results are those pretaining to a rigorous Hamiltonian formulation of a relativistic scalar field with quartic self-interaction in a two-dimensional space time [1]. These promising results clearly make the study of model theories attractive, and their study as Hamiltonian theories especially so.

Keywords

Scalar Field Symmetric Operator Fermion Field Canonical Operator Selfadjoint Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. Glimm and A. Jaffe, A λ(φ4)2 Field Theory Without Cutoffs I, Phys. Rev. 176, 1945(1968); A λ(φ4)2 Field Theory Without Cutoffs II (to be published); A. Jaffe, Varenna Lectures 1968, Academic Press (to be published).Google Scholar
  2. 2.
    A. Jaffe, O. E. Lanford III and A. S. Wightman, “A General Class of Cut-Off Model Fields” (to be publ.)Google Scholar
  3. 3.
    R. Streater and A. S. Wightman, PCT, Spin & Statistics, and All That, W. A. Benjamin, Inc. (1964).Google Scholar
  4. L. Streit, Bull. Am. Phys. Soc. 14, 86 (1969).Google Scholar
  5. 4.
    A.S. Wightman, 1964 Cargese Summer School Lectures, M. Levy, editor, Gordon and Breach (1967).Google Scholar
  6. 5.
    R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 6.
    M. A. Naimark, Normed Rings, (translated by L. F. Boron), P. Noordhoff, Ltd. (1964), Chapter VI.Google Scholar
  8. 7.
    J. von Neumann, Math. Ann. 104, 570 (1931).MathSciNetCrossRefGoogle Scholar
  9. 8.
    L. Garding and A. S. Wightman, Proc. Nat. Acad. Sei. 40, 617 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  10. J. R. Klauder, J. McKenna and E. J. Woods, J. Math. Phys. 7, 822 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 9.
    J. R. Klauder, J. Math. Phys. 6, 1666 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 10.
    R. T. Powers, Coram. Math. Phys. 4, 145 (1967).MathSciNetADSCrossRefGoogle Scholar
  13. 11.
    K. Sinha and G. G. Emch, Bull. Am. Phys. Soc. 14, 86 (1969).Google Scholar
  14. 12.
    H. Araki, J. Math. Phys. 1, 492 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 13.
    J. R. Klauder, J. Math. Phys. 8, 2392 (1967).ADSCrossRefGoogle Scholar
  16. 14.
    H. Grimmer, “Model Field Theories”, University of Edinburg thesis (1968).Google Scholar
  17. 15.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, W. A. Benjamin, Inc. (1968), Chapter 7.Google Scholar
  18. 16.
    F. Riesz and B. Sz.-Nagy, Functional Analysis, Fredrick Ungar Publ.Comp. (1955).Google Scholar
  19. 17.
    E. Nelson, Annals of Math. (Princeton) 70, 572 (1959)MATHCrossRefGoogle Scholar
  20. 18.
    T. Kato, Perturbation Theory for Linear Operators, Springer Verlag (1966).Google Scholar
  21. 19.
    J. Glimm and A. M. Jaffe, “Singular Perturbations of Self Adjoint Operators”, Comm. Pure and Applied Math. (to be published).Google Scholar
  22. 20.
    O. E. Lanford III, Construction of the Dynamics for a Cutoff Yukawa Theory, A. M. S. Memoir, to appear.Google Scholar
  23. 21.
    A. M. Jaffe, Dynamics of a Cutoff λφ4 Field Theory, A. M. S. Memoir, to appear.Google Scholar
  24. 22.
    J. Glimm, Comm. Math. Phys. 5, 343 (1967); 6, 120 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 23.
    E. Nelson, Mathematical Theory of Elementary Particles, R. Goodman and I. Segal, Editors, M.I.T. Press, 1966.Google Scholar
  26. 24.
    J. Glimm, Comm. Math. Phys. 8, 12 (1968).ADSMATHCrossRefGoogle Scholar
  27. 25.
    P. Federbush, J. Math. Phys. 10, 50 (1969).ADSMATHCrossRefGoogle Scholar
  28. 26.
    M. Guenin, Comm. Math. Phys. 3, 120 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  29. 27.
    I. Segal, Proc. Nat. Acad. Sei. USA 57, 1178 (1967).ADSMATHCrossRefGoogle Scholar
  30. 28.
    H. F. Trotter, Pacific Journal of Math. 8, 887 (1958).MathSciNetMATHGoogle Scholar
  31. 29.
    A. Jaffe and R. Powers, Comm. Math. Phys. 7, 218 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 30.
    N. Aronszajn, Proc. Cambridge Phil. Soc. 39, 133(1943).MathSciNetADSCrossRefGoogle Scholar
  33. N. Aronszajn, Trans. Am. Math. Soc. 68, 337 (1950).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Wien 1969

Authors and Affiliations

  • John R. Klauder
    • 1
  1. 1.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations