Advertisement

Finite Energy Sum Rules — Use and Interpretation

Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 6/1969)

Abstract

The finite energy sum rules (FESR) are a tool for investigating the structure of scattering amplitudes. Together with this technique there goes a certain philosophy. We try to explain both in this lecture. We do not present a complete survey of the subject and, therefore, many important contributions are omitted. We prefer to discuss several cases that can serve as a good example of the technique and a foundation for the philosophy.

Keywords

Regge Trajectory Real Analytic Function Fixed Pole Argand Diagram High Energy Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. 1.
    D. Horn and C. Schmid, CALT-68-127 (1367), unpublished. A general analysis of theory and applications which we follow quite closely here is given by R. Dolen, D. Horn and C. Schmid, Phys. Rev. 166, 1768 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    Y. C. Liu and S. Okubo, Phys. Rev. Lett. 19, 190 (1967).ADSCrossRefGoogle Scholar
  3. V. Barger and R. J. N. Phillips, Phys. Lett. 26B, 730 (1968).ADSGoogle Scholar
  4. 3.
    Note that an odd (even)amplitude has an odd (even) real part and an even (odd) imaginary part. Therefore the right-signature FESR, that can be derived by integrations from-N to N are even (odd) respectively. The wrong signature FESR lead to Schwarz superconvergence relations; J. H. Schwarz, Phys. Rev. 159, 1269 (1967).ADSCrossRefGoogle Scholar
  5. 4.
    A. Logunov, L. D. Soloviev and A. N. Tavkhelidze, Phys. Lett. 24B, 181 (1967).ADSGoogle Scholar
  6. K. Igi and S. Matsuda, Phys. Rev. Lett. 18, 625 (1967).ADSCrossRefGoogle Scholar
  7. D. Horn and C. Schmid, ref. 1. These papers were based on a method introduced and applied by K. Igi, Phys. Rev. Lett. 9, 76 (1962) to an investigation of the Pomeranchukon.ADSMATHCrossRefGoogle Scholar
  8. 5.
    We use the notatiop of V. Singh, Phys. Rev. 129, 1889 (1963).ADSCrossRefGoogle Scholar
  9. G. F. Chew, M. L. Goldberger, F. E. Low and Y. Nambu, Phys. Rev. 106, 1337 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 6.
    R. Dolen, D. Horn and C. Schmid, Phys. Rev. Lett. 19, 402 (1967).ADSCrossRefGoogle Scholar
  11. 6.
    R. Dolen, D. Horn and C. Schmid, Phys. Rev. 166, 1768 (1968).ADSCrossRefGoogle Scholar
  12. 7.
    A. Donnachie, R. G. Kirsopp and C. Lovelace, Phys. Lett. 26B, 161 (1968).ADSGoogle Scholar
  13. 8.
    R. Aviv and D. Horn, Phys. Rev. Lett, 21, 704 (1968).ADSCrossRefGoogle Scholar
  14. 9.
    G. F. Chew and A. Pignotti, Phys. Rev. Lett. 20, 1078 (1968).ADSCrossRefGoogle Scholar
  15. G. F. Chew, Comments on Nuclear and Particle Physics, 2, 74 (1968).Google Scholar
  16. 10.
    C. Schmid, Phys. Rev. Lett. 20, 689 (1968).ADSCrossRefGoogle Scholar
  17. 11.
    H. Harari, Phys. Rev. Lett. 20, 1395 (1968).ADSCrossRefGoogle Scholar
  18. 12.
    M. Ademollo, H. R. Rubinstein, G. Veneziano and M. A. Virasoro, Phys. Rev. Lett. 19, 1402 (1962).ADSCrossRefGoogle Scholar
  19. 12.
    M. Ademollo, H. R. Rubinstein, G. Veneziano and M. A. Virasoro, Phys. Lett. 27B, 99 (1968).ADSGoogle Scholar
  20. 12.
    M. Ademollo, H. R. Rubinstein, G. Veneziano and M. A. Virasoro, Phys. Rev. 176, 1904 (1968).ADSCrossRefGoogle Scholar
  21. 13.
    G. Veneziano, Nuovo Cim. 57A, 190 (1968).ADSCrossRefGoogle Scholar
  22. 14.
    J. L. Rosner, Phys. Rev. Lett. 22, 689 (1969).ADSCrossRefGoogle Scholar
  23. H. Harari, Phys. Rev. Lett. 22, 562 (1969).ADSCrossRefGoogle Scholar
  24. 15.
    G. Lovelace, Phys. Lett. 28B, 264 (1968).ADSGoogle Scholar
  25. 16.
    J. Shapiro and J. Yellin, preprint 1968; F. Drago and S. Matsuda, preprint 1969.Google Scholar

Copyright information

© Springer-Verlag / Wien 1969

Authors and Affiliations

  • D. Horn
    • 1
  1. 1.Physics DepartmentTel Aviv UniversityTel AvivIsrael

Personalised recommendations