Advertisement

Effective Lagrangians and SU(3) × SU(3) Symmetry Breaking

  • S. Gasiorowicz
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 6/1969)

Abstract

At last year’s Schladming Winter School, Professor Gürsey discussed some aspects of the effective Lagrangian technique, which he helped to develop [1]. In the following lectures I shall apply this technique to the study of chiral SU(3) × SU(3). As background to a detailed discussion of a model Lagrangian, I will (i) review the Lagrangian formalism, (ii) discuss the transformation properties of fields, (iii) show how field algebra and symmetry breaking that leads to PCAC are implemented. In the discussion of the model, which was worked out in collaboration with D. A. Geffen, I will lay stress on the leptonic decay constants of the spin O and spin 1 mesons, as far as comparison with experiment is concerned. For the rest, the stress will be on the technical aspects of constructing effective Lagrangians. Baryons will not be discussed, except of a brief mention in sec. (II) [2].

Keywords

Symmetry Breaking Commutation Relation Mass Term Chiral Symmetry Vector Meson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The pioneering papers in this field are J. Schwinger, Ann. Phys. N. Y. 2, 407 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  2. F. Gürsey, Nuovo Cimento 16, 230 (1960).MATHCrossRefGoogle Scholar
  3. F. Gürsey, Ann. Phys. N. Y. 12, 91 (1961).ADSMATHCrossRefGoogle Scholar
  4. G. Kramer, H. Rollnik and B. Stech, Z. Physik 154, 564 (1959).ADSMATHCrossRefGoogle Scholar
  5. M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960) of which the last is closed to current interests.MATHCrossRefGoogle Scholar
  6. Recent developments were stimulated by S. Weinberg, Phys. Rev. Letters 18, 188 (1967).ADSCrossRefGoogle Scholar
  7. carried on by J. Schwinger, Physics Letters 24B, 473 (1967).ADSGoogle Scholar
  8. J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).ADSCrossRefGoogle Scholar
  9. J. Cronin, Phys. Rev. 161, 1483 (1967).ADSCrossRefGoogle Scholar
  10. W. A. Bardeen and B. W. Lee, Nuclear Physics and Particle Physics (ed. B. Margolis and C. Lam), W. A. Benjamin, New York 1968.Google Scholar
  11. B. W. Lee and H. T. Nieii, Phys. Rev. 166, 1507 (1968).ADSCrossRefGoogle Scholar
  12. R. Arnowitt, M. H. Friedman and P. Nath, Phys. Rev. Letters 19, 1085 (1967).ADSCrossRefGoogle Scholar
  13. 2.
    A discussion closed to ours in spirit may be found in B. W. Lee, Phys. Rev. 170, 1359 (1968); For a brief review see the review article by S. Gasiorowicz and D. A. Geffen (to be published).ADSCrossRefGoogle Scholar
  14. 3.
    J. S. R. Chisholm, Nuclear Physics 26, 469 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  15. S. Kamefuchi, L. O’Raifeartaigh and A. Salam, Nuclear Physics 28, 529 (1961).MathSciNetADSGoogle Scholar
  16. 4.
    Y. Nambu, Phys. Letters 26B, 626 (1968); S. Coleman, J. Wess and B. Zumino (to be published).ADSGoogle Scholar
  17. 5.
    J. J. Sakurai, Ann. Phys. N. Y. 11, 1 (1960).MathSciNetADSCrossRefGoogle Scholar
  18. M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961).MathSciNetADSCrossRefGoogle Scholar
  19. 6.
    C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).MathSciNetADSCrossRefGoogle Scholar
  20. 7.
    For a discussion of Schwinger terms see G. Källén, Acta Physica Austriaca, Suppl. V (1968).Google Scholar
  21. 8.
    This observation was also made by P. K. Mitter and L. J. Swank (to be published), and I. Kimmel, Phys. Rev. Letters 21, 177 (1968).CrossRefGoogle Scholar
  22. 9.
    F. Gürsey, Acta Physica Austriaca, Suppl. V (1968).Google Scholar
  23. 10.
    See the rapporteur talk by H. Harari, Proceedings of the XIV International Conference on High Energy Physics held in Vienna, 1968.Google Scholar
  24. 11.
    S. Weinberg, Phys. Rev. Letters 18, 188 (1967).ADSCrossRefGoogle Scholar
  25. W. A. Bardeen and B. W. Lee, to be published. A nonlinear realization of SU(3)×SU(3) was discussed at this School by K. Dietz.Google Scholar
  26. 12.
    P. K. Mitter and L. J. Swank, to be published; S. Gasiorowicz and D. A. Geffen, unpublished.Google Scholar
  27. 13.
    K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters, 16, 255 (1966).MathSciNetADSCrossRefGoogle Scholar
  28. 13.
    K. Kawarabayashi and M. Suzuki, Fayyazuddin and Riazuddin, Phys. Rev. 147, 107 (1966).Google Scholar
  29. 14.
    R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Wien 1969

Authors and Affiliations

  • S. Gasiorowicz
    • 1
    • 2
  1. 1.Deutsches Elektronen Synchrotron - (DESY)HamburgGermany
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations