Advertisement

Stochastic Approach to Quantum Mechanics and to Quantum Field Theory

  • W. Garczyński
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 6/1969)

Abstract

In these notes I shall inform you about my recent work on the, what I call, quantum stochastic processes which has been proved to be the very natural language for expressing the contents of quantum mechanics and quantum field theory as well [1]–[7]. The theory of the quantum Markovian processes is especially useful there and permits rigorous mathematical formulation of the Dirac and Feynman heuristic approach to quantum theory. Since I already talked two weeks ago about the stochastic formulation of the nonrelativistic quantum mechanics at the VI-th Winter School for Theoretical Physics in Karpacz, organized by the University of Wroclaw [8], here I would like to emphasize the applications of the quantum Markovian processes to quantum field theory. Let me just mention that the main idea of nonrelativistic description of one particle moving in external field consists of introducing the density of the transition probability amplitude (s,y|t,x) from the point y at the time s to the point x at the time t > s. Both x and y vary within the domain X which is a part of space R3 accessible for a particle.

Keywords

Stochastic Approach Nonrelativistic Quantum Mechanic Physical Amplitude Relativistic Quantum Field Theory Quantum Stochastic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Garczynski, Quantum Mechanics as Quantum Markovian Process, Acta Phys. Polon. (in Press).Google Scholar
  2. 2.
    W. Garczynski, Quantum Markovian Process for One Nonrelativistic Particle, Bull. Acad. Polon. Sei., (in press).Google Scholar
  3. 3.
    W. Garczynski, Quantum Markovian Process for Nonrelativistic Particle With Spin, Bull Acad. Polon.Sei., (in press).Google Scholar
  4. 4.
    W. Garczynski, Quantum Markovian Process With Denumerable Set of States, Bull. Acad. Polon. Sei., (in press).Google Scholar
  5. 5.
    W. Garczynski, Dynamical Equations for Spinless, Neutral Bosons System. Part I, On Mass-shell Formulation, Acta Phys. Polon., (in press).Google Scholar
  6. 6.
    W. Garczynski, Dynamical Equations for Spinless, Neutral Bosons System, Part II, Off Mass-shell Formulation, Acta Phys. Polon., (in press).Google Scholar
  7. 7.
    W. Garczynski, On Quantum Stochastic Processes, Bull. Acad. Polon. Sei., (in press).Google Scholar
  8. 8.
    W. Garczynski, Lecture at the VI-th Winterschool for Theoretical Physics in Karpacz, February 1969, Proceedings.Google Scholar
  9. 9.
    A. N. Kolmogorov, Math. Ann., 104, 415 (1931).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    A. N. Kolmogorov, Uspekhi Mat. Nauk., 33, 567 (1932).Google Scholar
  11. 11.
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II., John Wiley and Sons, Inc. 1966.Google Scholar
  12. 12.
    M. Loǹve, Probability Theory, Sec. Ed. D. Van Nostrand Co. Inc. 1960.Google Scholar
  13. 13.
    J. L. Doob, Stochastic Processes, New York, 1953.Google Scholar
  14. 14.
    E. B. Dynkin, Osnovanija teorii markovskikh processov (in Russian), Moscow 1959.Google Scholar
  15. 15.
    E. B. Dynkin, Markovskije Processy, (in Russian), Moscow 1963.Google Scholar
  16. 16.
    K. Itô, Stochastic Processes, I and II (in Japanese), Russian translation, Moscow 1960.Google Scholar
  17. 17.
    K. Itô and H. D. McKean Jr., Diffusion Processes, and their Sample Paths, Springer-Verlag Berlin 1965.Google Scholar
  18. 18.
    M. Smoluchowski, Bull. Int. Acad. Polonaise, Sei. Lett., A, 418 (1913).Google Scholar
  19. 19.
    P. A. M. Dirac, The Principles of Quantum Mechanics, 4-th ed., Oxford 1958.Google Scholar
  20. 20.
    R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York 1965.Google Scholar
  22. 22.
    L. Streit, Acta Phys. Austriaca, Suppl. II, 2 (1965).Google Scholar
  23. 23.
    E. W. Montroll, Comm. Pure and Applied Math. 5, 415 (1952).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    J. M. Gelfand and A. M. Yaglom, Usp. Mat. Nauk, Vol. XI, 77 (1956).MathSciNetGoogle Scholar
  25. 25.
    M. Kac, Probability and Related Topics in Physical Science, Inc. London 1959.Google Scholar
  26. 26.
    A. S. Wightman, Phys. Rev. 101 (1956), 860.MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    W. Heisenberg, Z. Physik., 120 (1943), 513 and 673.MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    G. F. Chew, S-Matrix Theory of Strong Interactions, Inc. New York 1962.Google Scholar
  29. 29.
    J. Rzewuski, Report at the VI-th Winterschool in Karpacz, February 1967, Proceedings, Vol. I, 1-42.Google Scholar
  30. 30.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (in Russian), Moscow 1957.Google Scholar
  31. 31.
    J. Rzewuski, Field Theory, Part II (to appear).Google Scholar
  32. 32.
    R. Jost, The General Theory of Quantized Fields, Am. Math. Soc, Providence 1965.MATHGoogle Scholar
  33. 33.
    J. M. Gelfand and J. J. Vilenkin, Generalized Functions, Vol. 4, (in Russian), Moscow 1961.Google Scholar
  34. 34.
    K. Urbanik, Teoria verojatnostej i jejo prim. 1, 146 (1956).MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag / Wien 1969

Authors and Affiliations

  • W. Garczyński
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of WroclawPoland

Personalised recommendations