CP Violation and Cosmological Fields

  • O. Nachtmann
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 6/1969)


The rather surprising fact that the decay properties of the neutral K mesons can provide information on the gravitational interaction of these particles was first discovered by Good [1] long before CP violation. He realized that the very observation of a short and long lived component implied that the gravitational energies of KO and ̄KO could not be very different. So the ̄KO cannot fall upwards as was proposed sometimes for antiparticles. The discovery of CP violation [2] brought increased interest to this field. A number of suggestions were made to explain the observed CP violation by the action of some unknown cosmological field [3]–[6]. Most of these explanations have now been ruled out by experiment. But we can take another point of view, as Professor Thirring did last year here in Schladming [7], namely to ask what information we can get from existing experiments on cosmological fields. We will explore this below in a simple field theoretical model. But before we will review the propagator method for defining the mass matrix as given by Sachs [8], [9].


Mass Matrix Gravitational Coupling Weak Equivalence Principle Gravitational Coupling Constant Diagonal Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Good, Phys. Rev. 121, 311 (1961).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Letters 13, 138 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    J. S. Bell and J. K. Perring, Phys. Rev. Letters 13, 348 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    J. Bernstein, N. Cabibbo and T. D. Lee, Phys. Letters 12, 146 (1964).ADSCrossRefGoogle Scholar
  5. T. D. Lee, Phys. Rev. 137, B1621 (1965).ADSCrossRefGoogle Scholar
  6. 5.
    F. Gürsey and A. Pais, unpublished.Google Scholar
  7. 6.
    S. Weinberg, Phys. Rev. Letters 13, 495 (1964).ADSCrossRefGoogle Scholar
  8. 7.
    W. Thirring, Acta Phys. Austriaca, Suppl. V, (1968).Google Scholar
  9. 8.
    R. Jacob and R. G. Sachs, Phys. Rev. 121, 350 (1961).MathSciNetADSCrossRefGoogle Scholar
  10. 9.
    R. G. Sachs, Ann. Phys. 22, 239 (1963).ADSCrossRefGoogle Scholar
  11. 10.
    J. S. Bell and J. Steinberger — Proceedings Oxford Conference (1965).Google Scholar
  12. 11.
    F. J. Dyson, Phys. Rev. 75, 1736 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 12.
    L. Wolfenstein and T. D. Lee, Phys. Rev. 138, B1490 (1965).CrossRefGoogle Scholar
  14. 13.
    L. Wolfenstein, Nuovo Cimento 42A, 17 (1966).ADSGoogle Scholar
  15. 14.
    Review of Particle Properties, Revs. Modern Phys. (January 1969).Google Scholar
  16. 15.
    M. Banner et al., Phys. Rev. Letters 21, 1107 (1968).ADSCrossRefGoogle Scholar
  17. 16.
    I. A. Budagov et al., Phys. Letters 28B, 215 (1968).ADSGoogle Scholar
  18. 17.
    J. Chollet et al., CERN Preprint, (Jan. 1969). This experiment was designe principally to measure φOO.Google Scholar
  19. 18.
    X. de Bouard et al., Phys. Letters 15, 58 (1965).ADSCrossRefGoogle Scholar
  20. 19.
    W. Thirring, Fortschr. d. Phys. 7, 79 (1959).ADSCrossRefGoogle Scholar
  21. 19.
    W. Thirring, Ann. Phys. 16, 96 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 20.
    C. Alff-Steinberger et al., Phys. Letters 21, 595 (1966).ADSCrossRefGoogle Scholar
  23. 21.
    M. Baldo-Ceolin et al., Nuovo Cimento 45A, 733 (1966).ADSGoogle Scholar
  24. 22.
    M. Bott-Bodenhausen et al., Phys. Letters 23, 277 (1966).ADSCrossRefGoogle Scholar
  25. 23.
    W. A. Mehlhopet al., Phys. Review 172, 1613 (1968).ADSCrossRefGoogle Scholar
  26. 24.
    World average, taken from Ref. [14].Google Scholar
  27. 25.
    R. H. Dicke in: “Relativity, Groups and Topology”, De Witt Ed., Les Houches (1963).Google Scholar

Copyright information

© Springer-Verlag / Wien 1969

Authors and Affiliations

  • O. Nachtmann
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations