Skip to main content

Composite Particle Collisions in the Non-Relativistic Three-Body Theory

  • Conference paper
Book cover Particle Physics

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 6/1969))

  • 176 Accesses

Abstract

The composite particle collision problem is evidently of great importance in many fields of quantum physics. In the last eight years or so this problem has been studied with increasing interest, in particular for the case of three nonrelativistic elementary particles, i.e., for the scattering of an elementary particle by a two-particle bound-state (for instance, a nucleon by a deuteron).

Seminar given at the VIII. Internationalen Universitätswochen für Kernphysik, Schladming, Feb. 24–March 8, 1969.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. L. D. Faddeev, Soviet Phys.-JETP 12, 1014 (1961).

    MathSciNet  Google Scholar 

  2. L. D. Faddeev, Soviet Phys. Dokl. 6, 384 (1961); 7, 600 (1963).

    MathSciNet  ADS  Google Scholar 

  3. L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory (Israel Program for Scientific Translation, Jerusalem 1965).

    Google Scholar 

  4. A. N. Mitra, Nucl. Phys. 32, 529 (1962).

    Article  MATH  Google Scholar 

  5. A. N. Mitra, Phys. Rev. 139, B1472 (1965).

    Article  ADS  Google Scholar 

  6. Compare also: A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963).

    Article  ADS  Google Scholar 

  7. R. D. Amado, Phys. Rev. 132, 486 (1963); 141, 902 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Amado, R. D. Amado and Y. Y. Yam, Phys. Rev. 136, B650 (1964); 140, B1291 (1965).

    Article  ADS  Google Scholar 

  9. R. Amado, R. D. Amado and Y. Y. Yam, Phys. Rev. Lett. 13, 574 (1964).

    Article  ADS  Google Scholar 

  10. Compare also: P. E. Shanley and R. Amado, Annals of Physics 44, 363 (1967) where many relevant references are given.

    Article  ADS  Google Scholar 

  11. C. Lovelace, Phys. Rev. 135, B1225 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  12. See also: A. C. Phillips, Phys. Rev. 142, 984 (1966); 145, 733 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Ekstein, Phys. Rev. 101, 880 (1956); Compare also [6] and Section 2 of the reference given in[11].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Uβα can be defined explicitly. Instead of doing this we give in the following the integral equations which it fulfills.

    Google Scholar 

  15. R. Amado, R. D. Amado and B. W. Lee, Phys. Rev. 121, 319 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. The Faddeev-type equations (5.1) were given by E. O. Alt, P. Grassberger and W. Sandhas, Nucl. Phys. B2, 167 (1967).

    Article  ADS  Google Scholar 

  17. Compare in this respect the discussion at the end of Section 7, and footnote [17].

    Google Scholar 

  18. Faddeev originally constructed his equations by summing up the subsystem series [1].

    Google Scholar 

  19. K. M. Watson, Phys. Rev. 89, 575 (1953).

    Article  ADS  MATH  Google Scholar 

  20. R. J. Glauber, in: High Energy Physics and Nuclear Structure, ed.: G. Alexander (North Holland, Amsterdam (1967)).

    Google Scholar 

  21. Instead of more general expressions for the “form factors” can also be used. 16. We apply, in fact, a suitable version of the quasiparticle method developed for the two-body case by S. Weinberg: Phys. Rev. 130, 776 (1963); 131, 440 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  22. see also K. Meetz, J. Math. Phys. 3, 690 (1962). It should be noted that Weinberg himself proposed an extension of this treatment to the three-(n-)body-case (Phys. Rev. 133, B232 (1964)). However, his very complicated version seems to be beyond any practical applicability.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Faddeev-type equations for transition operators which are different from our Uβα have previously been introduced by Lovelace who proposed many of the discussed ideas. Since his equations, however, contain the Tγ and the potentials Vγ it is even cumbersome to apply the approximation of Section 6. For the performance of the general treatment of Section 7 the replacement of his relations by the equations (5.1) was decisive.

    Google Scholar 

  24. C. Lovelace, in: Strong Interactions and High Energy Physics, ed.: R. G. Moorhouse (Oliver and Boyd, London 1964).

    Google Scholar 

  25. S. Weinberg, Phys. Rev. 131, 440 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  26. To be precise: this property holds for complex energies. Some mathematical effort is required in going to the real axis.

    Google Scholar 

  27. In the Faddeev equations Tγ GO or is a two-par-tide operator acting in the three-particle space. The above considerations on the Schmidt norms are only valid for genuine two-particle operators. But they lead to similar statements with respect to the operator norms of Tγ GO as read in the three-particle space. Such properties are sufficient for our argumentation.

    Google Scholar 

  28. J. Carew and L. Rosenberg, preprint.

    Google Scholar 

  29. H. Feshbach, Annals of Phys. 5, 357 (1958); 19, 287 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P. Grassberger and W. Sandhas, Zeitschr. f. Physik 220, 29 (1969).

    Article  ADS  MATH  Google Scholar 

  31. E. O. Alt, P. Grassberger and W. Sandhas, Bonn preprint 2-37, See also the relevant references given there and in [5].

    Google Scholar 

  32. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

    Article  ADS  Google Scholar 

  33. Recall that solvable field theoretical models, as, e.g., the Zachariasen model (F. Zachariasen, Phys. Rev. 121, 1851 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. W. Thirring, Nuovo Cimento 23, 1064 (1962)) have usually such a structure.

    Article  MathSciNet  Google Scholar 

  35. An equivalent field theoretical (Lee-type) model has been developed by R. D. Amado [4].

    Google Scholar 

  36. The separation (10.3) leads to a splitting of T of the structure (7.1) [16].

    Google Scholar 

  37. P. Grassberger and W. Sandhas, Zeitschr. f. Physik 217, 9 (1968).

    Article  ADS  Google Scholar 

  38. Compare the relevant papers cited in [3], [4], [7].

    Google Scholar 

  39. For further references see H. P. Noyes and H. Fieldeldey, in: Three-Particle Scattering in Quantum Mechanics, ed.: J. Gillespie and J. Nuttall (Benjamin, New York 1968).

    Google Scholar 

  40. The details are given in: E. Alt, P. Grassberger and W. Sandhas, Bonn-preprint 2-55 (1969), where also the three-body bound-state problem is studied.

    Google Scholar 

  41. J. S. Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968) Compare also

    Article  ADS  Google Scholar 

  42. T. A. Osborn, SLAC-report 79 (1967).

    Google Scholar 

  43. V. A. Alessandrini, H. Fanchiotti and C. A. Garcia, Phys. Rev. 170, 935 (1968).

    Article  ADS  Google Scholar 

  44. Note, that in contrast to the above results, variational calculations usually yield too small values of ΔE. Compare e.g., the discussion of the whole problem in [31], Section V. 1, where further methods and results are reviewed.

    Google Scholar 

  45. Compare the references 2–7 given in [37] and furthermore

    Google Scholar 

  46. R. G. Newton, J. Math. Phys. 8, 851 (1967).

    Article  ADS  Google Scholar 

  47. R. Omnes, Phys. Rev. 165, 1265 (1968).

    Article  ADS  Google Scholar 

  48. P. Grassberger and W. Sandhas, Nucl. Phys. B2, 181 (1967).

    Article  ADS  Google Scholar 

  49. Applying such treatments, it is not necessary to start by first writing integral equations with connected kernels. This is in contrast to claims often made (compare also the discussion of this point in [29] and in Section 9).

    Google Scholar 

  50. More general expressions for the “potential” occur if nonpolar rest terms are retained in the subsystems (compare the generalizations of the treatment of Section 6 given in Section 7).

    Google Scholar 

  51. E. O. Alt, P. Grassberger and W. Sandhas, Bonn-preprint 2-48(1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag / Wien

About this paper

Cite this paper

Sandhas, W. (1969). Composite Particle Collisions in the Non-Relativistic Three-Body Theory. In: Urban, P. (eds) Particle Physics. Acta Physica Austriaca, vol 6/1969. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7638-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7638-2_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7640-5

  • Online ISBN: 978-3-7091-7638-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics