Environmental Impacts and Risks of Nuclear Fission Energy

  • Günther Kessler
Part of the Topics in Energy book series (TENE)


During normal operation of nuclear power plants and other facilities of the nuclear fuel cycle, radioactivity is released into the environment at a controlled rate. Airborne radioactivity includes the radioisotopes of the noble gases krypton, xenon, radon, of tritium, C-14, and also of fission product and fuel aerosols. Liquid effluents released into rivers, large lakes or the ocean contain tritium, fission products and other radioactive substances. Man may be exposed to ionizing radiation through various exposure pathways (Fig. 8–1):

  • external β- and γ-radiation of the gaseous radioactive nuclides in the atmosphere β- and γ-submersion) or by immersion in water (swimming),

  • radiation from aerosol particles deposited on the ground (soil radiation),

  • internal exposure following inhalation of radioactive nuclides (inhalation),

  • internal exposure as a result of the intake of contaminated food or water (ingestion).


Fission Product Fuel Element Fuel Cycle Steam Explosion Liquid Effluent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Literatur

Radioactivity releases during normal operation

  1. Allgemeine Berechnungsgrundlagen für die Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Oberflächengewässern. Bonn: Bundesministerium des Innern, Gemeinsames Ministerialblatt 21, 369–436 (1979).Google Scholar
  2. Baumgärtner, F., et al.: Stand der Technik bei der Behandlung des Auflöserabgases einer Wiederaufarbeitungsanlage. Kernforschungszentrum Karlsruhe, KfK-2615 (1978).Google Scholar
  3. Bericht über das in der Bundesrepublik Deutschland geplante Entsorgungszentrum für ausgediente Brennelemente aus Kernkraftwerken. Hannover: Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK), 1977.Google Scholar
  4. Final Environmental Statement Related to Construction and Operation of Clinch River Breeder Reactor Plant. Washington: US Nuclear Regulatory Commission, NUREG-0139 (1977).Google Scholar
  5. Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO). Washington: US Nuclear Regulatory Commission, NUREG-002 (1976).Google Scholar
  6. Glasstone, S., Jordan, H.W.: Nuclear Power and Its Environmental Effects. LaGrange Park, 111.: American Nuclear Society. 1980.Google Scholar
  7. Halbritter, G., Leßmann, E.: Vergleich der Strahlenexposition aus Emissionen von Modell-Brennstoffkreisläufen für den Druckwasserreaktor und den Schnellen Brutreaktor. Kernforschungszentrum Karlsruhe, KfK-3315 (1982).Google Scholar
  8. Halbritter, G., et al.: Beitrag zu einer vergleichenden Umweltbelastungsanalyse am Beispiel der Strahlenexposition beim Einsatz von Kohle und Kernenergie zur Stromerzeugung. Kernforschungszentrum Karlsruhe, KfK-3266 (1982).Google Scholar
  9. Halbritter, G., et al.: Contribution to a Comparative Environmental Impact Assessment of the Use of Coal and Nuclear Energy for Electricity Generation. In: Health Impacts of Different Sources of Energy, Proc. Int. Symposium, Nashville, Tenn., 22–26 June 1981, pp. 229–247. Vienna: International Atomic Energy Agency. 1982.Google Scholar
  10. International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Oxford: Pergamon Press. 1977.Google Scholar
  11. Jackson, P., et al.: Radon-222 Emissions in Ventilation Air Exhausted from Underground Mines. Washington: US Nuclear Regulatory Commission, NUREG-CR-0627 (1979).Google Scholar
  12. Neilson, K.: Prediction of Net Radon-222 Emission from a Model Open Pit Uranium Mine. Washington: US Nuclear Regulatory Commission, NUREG-CR-0628 (1979).Google Scholar
  13. Preliminary Safety and Environmental Information Document. Washington: US Department of Energy, DOE/NE-0003/7 (1980).Google Scholar
  14. Proposed Final Environmental Impact Statement on LMFBR’s. Washington: US Energy Research and Development Agency, WASH-1535 (1975).Google Scholar
  15. Radiological Impact Caused by Emissions of Radionuclides into Air in the USA, Washington: US Environmental Protection Agency, US-EPA 520/7–79–006, Preliminary Report (1979).Google Scholar
  16. Regulating Guide 1.109, Revision 1, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR, Part 50, Appendix 1. Washington: US Nuclear Regulatory Commission. 1977.Google Scholar
  17. Report to the American Physical Society by the Study Group on Nuclear Fuel Cycles and Waste Management (Pines, D., ed.). Reviews of Modern Physics 50 (1), Part II (1978).Google Scholar
  18. Schüttelkopf, H.: Radioökologische Aspekte der Entsorgung. In: Chemie der nuklearen Entsorgung (Baumgärtner, F., ed.), Vol. 1, pp. 155–181. München: Karl Thiemig. 1978.Google Scholar
  19. Status Report on EPRI Fuel Cycle Accident Risk Assessment. Palo Alto, Cal.: Electric Power Research Institute, EPRI-NP-1128 (1979).Google Scholar
  20. Technology for Commercial Radioactive Waste Management. Washington: US Department of Energy, DOE/ET-0028 (1979).Google Scholar
  21. Uranium Fuel Cycle (CFR, Title 40, Part 190). Washington: US Environmental Protection Agency. 1977.Google Scholar
  22. Wilhelm, I.: Spaltjodabtrennung in Kernkraftwerken und Wiederaufarbeitungsanlagen. Kernforschungszentrum Karlsruhe, KfK-2244 (1975).Google Scholar

Risk assessment

  1. Bayer, A., Heuser, F.W.: Basic Aspects and Results of the German Risk Study. Nuclear Safety 22, 695–709 (1981).Google Scholar
  2. Der Bundesminister für Forschung und Technologie: Deutsche Risikostudie Kernkraftwerke, Eine Untersuchung zu dem durch Störfälle in Kernkraftwerken verursachten Risiko. Köln: TÜV Rheinland, 1979.Google Scholar
  3. Bunz, H., et al: The Role of Aerosol Behavior in Light Water Reactor Core Melt Accidents. Nuclear Technology 53, 141–146 (1981).Google Scholar
  4. Canvey Island Report: Summary of an Investigation of Potential Hazards from Operations in the Canvey Islands/Thurrock Area. London: UK Health and Safety Executive. 1978.Google Scholar
  5. Dunster, H.J.: The Approach of a Regulatory Authority to the Concept of Risk. IAEA Bulletin 22 (5/6), 123–128 (1980).Google Scholar
  6. Ehrhardt, J., et al.: Unfallfolgen- und Risikoabschätzungen im Anschluß an die probabilistische Sicherheitsstudie für ein Kernkraftwerk mit einem HTR großer Leistung (HTR-1160). Kernforschungszentrum Karlsruhe, KfK-3382 (1982).Google Scholar
  7. Farmer, F.R.: Reactor Safety and Siting: A Proposed Risk Criterion. Nuclear Safety 8, 539–548 (1967).Google Scholar
  8. Hamilton, L.D.: Comparative Risks from Different Energy Systems: Evolution of the Methods of Studies. IAEA Bulletin 22 (5/6), 35–71 (1980).MathSciNetGoogle Scholar
  9. Hennies, H.H., et al.: Ablauf und Konsequenzen eines Kernschmelzenunfalls. Atomwirtschaft/Atomtechnik 26, 168–176 (1981).Google Scholar
  10. HTGR Accident Initiation and Progression Analysis Phase II. Report for the USA Department of Energy. San Diego, Cal.: General Atomic, GA-A 15000 (1978).Google Scholar
  11. Levenson, M., Rahm, F.: Realistic Estimates of the Consequences of Nuclear Accidents. Nuclear Technology 53, 99–110 (1981).Google Scholar
  12. Lewins, E.E.: Nuclear Power Reactor Safety. New York: John Wiley. 1977.Google Scholar
  13. Piper, H., et al.: Clinch River Breeder Reactor Plant Safety Study. Nuclear Safety 19, 316–329 (1978).Google Scholar
  14. Reactor Safety Study: An Assessment of Accidents Risks in US Commercial Nuclear Power Plants (Rasmussen, N.C., ed.). Washington: US Nuclear Regulatory Commission, WASH-1400 (NUREG-75/014) (1975).Google Scholar
  15. Risikoorientierte Analyse zum SNR-300 - Bericht der GRS. München: Gesellschaft für Reaktorsicherheit (GRS), GRS-Sl (1982).Google Scholar
  16. The Risk Assessment Review Group to the USNRC. Washington: US Nuclear Regulatory Commission, NUREG-CR-04000 (1978).Google Scholar
  17. Status Report on EPRI Fuel Cycle Accident Risk Assessment. Palo Alto, Cal.: Electric Power Research Institute, EPRI-NP-1128 (1979).Google Scholar


  1. The Agency’s Safeguards System (1965, as provisionally extended in 1966 and 1968). Vienna: International Atomic Energy Agency. INFCIRC/66/ Rev. 2 (1968).Google Scholar
  2. The Agency’s Statute (as amended up to 1 June 1973). Vienna: International Atomic Energy Agency. 1980.Google Scholar
  3. Avenhaus, R.: Material Accountability: Theory, Verification, Applications. New York: John Wiley. 1978.Google Scholar
  4. Bohnel, K.: Determination of Plutonium in Nuclear Fuels Using the Neutron Coincidence Method. Kernforschungszentrum Karlsruhe, KfK-2203 (1975). Translated as AWRE TRANS 70 (54/4252) (1978).Google Scholar
  5. Crane, T.W.: Measurement of Uranium and Plutonium in Solid Waste by Passive Photon or Neutron Counting and Isotopic Neutron Source Interrogation. Los Alamos National Laboratory, LA-8294-MS (1980).Google Scholar
  6. Crutzen, S.J.: Ultrasonic Techniques Suitable for Fuel Storage Surveillance and Containers Unique Identification and Integrity Checks. In: Proc. ESARDA 1st Annual Symposium, Brussels 25–27 April 1979, pp. 89–94. Ispra: Joint Research Center, Commission of European Communities, ESARDA 10 (1979).Google Scholar
  7. de Volpi, A.: Proliferation Plutonium and Policy. Oxford: Pergamon Press. 1979.Google Scholar
  8. European Safeguards Research and Development Association. Proc. ESARDA Annual Symposium on Safeguards and Nuclear Material Management. 1) Brussels, 25–27 April 1979 (ESARDA 10); 2) Edinburgh, 26–28 March 1980 (ESARDA 11); 3) Karlsruhe, 6–8 May 1981 (ESARDA 13). Ispra: Joint Research Centre, Commission of the European Communities.Google Scholar
  9. IAEA Safeguards An Introduction. Vienna: International Atomic Energy Agency, IAEA/SG/INF 3 (1981).Google Scholar
  10. Lovett, J.E.: Nuclear Materials: Accountability, Management and Safeguards. LaGrange Park, III: American Nuclear Society. 1974.Google Scholar
  11. Nuclear Safeguards Technology 1978, Proc. Symposium, Vienna, 2–6 October 1978. Vienna: International Atomic Energy Agency. 1979.Google Scholar
  12. The Physical Protection of Nuclear Materials. Vienna: International Atomic Energy Agency, INFCIRC/225/Rev. 1 (1977).Google Scholar
  13. Reilly, T.D., Parker, J.L.: A Guide to Gamma-ray Assay for Nuclear Material Accountability. Los Alamos National Laboratory, LA-5794-M (1975).Google Scholar
  14. Reilly, T.D., et al.: The Enrichment Meter, a Simple Method for Measuring Isotopic Enrichment. Los Alamos National Laboratory, LA-4605-M (1970).Google Scholar
  15. Safeguards in the Seventies - A Bibliography of LANL Safeguards R and D Publications 1970–1979. Los Alamos National Laboratory, LA-8663-MS (1980).Google Scholar
  16. Safeguards Techniques, Proc. Symposium, Karlsruhe, 6–10 July 1970. Vienna: International Atomic Energy Agency. 1970.Google Scholar
  17. Sher, R., Untermyer, S.: The Detection of Fissionable Materials by Nondestructive Means. LaGrange Park, 111.: American Nuclear Society. 1980.Google Scholar
  18. Special Issue for the Second Non-Proliferation Treaty. Review Conference, August 1980. IAEA Bulletin 22 (3/4), 1–101 (1980).Google Scholar
  19. The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Prohferation of Nuclear Weapons. Vienna: International Atomic Energy Agency, INFCIRC/153 (1971).Google Scholar
  20. Taylor, T.B.: Nuclear Safeguards. In: Annual Review of Nuclear Science, Vol. 25, pp. 406–421. Palo Alto, Cal.: Annual Reviews Inc. 1975.Google Scholar
  21. Treaty for the Prohibition of Nuclear Weapons in Latin America, 14 February 1967. New York: United Nations, UN Treaty Series No. 9068 (1967).Google Scholar
  22. The Treaty on the Non-Proliferation of Nuclear Weapons; London, Moscow, Washington, 1 July 1968. Vienna: International Atomic Energy Agency, INFCIRC/140 (1970).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Günther Kessler
    • 1
  1. 1.Institut für Neutronenphysik und ReaktortechnikKernforschungszentrum KarlsruheFederal Republic of Germany

Personalised recommendations