Advertisement

Technical Aspects of Nuclear Fuel Cycles

  • Günther Kessler
Part of the Topics in Energy book series (TENE)

Abstract

After discharge from the reactor core, the fuel elements are stored on the reactor site for a period of at least one year to allow for radioactivity decay and cooling. The reactor plant proper usually has a fuel storage capacity of at least three years’ discharge volume in addition to a full standby core inventory. The use of compact storage racks with neutron absorbers allows this storage capacity even to be extended to nine years’ discharge volume. Spent fuel elements are then transported in spent fuel casks either to intermediate storage facilities or to storage pools at reprocessing plants. Table 7–1 shows the fuel characteristics of discharged fuel elements for different converter reactors and LMFBR’s. The total activity, expressed in Ci/kg, for various times after discharge is very similar for fuel of converter and breeder reactors.

Keywords

Fission Product Fuel Element Fuel Cycle Spend Fuel Uranyl Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Literature

Transport and storage of spent fuel elements

  1. Brennelement-Zwischenlager Ahaus. Hannover: Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK). 1979.Google Scholar
  2. International Nuclear Fuel Cycle Evaluation, Spent Fuel Management. Report of INFCE Working Group 6. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  3. The Safe Transport of Radioactive Materials. Special Issue. IAEA Bulletin 21 (6), 2–75 (1979).Google Scholar
  4. Shipments of Nuclear Fuel and Waste: Are They Really Safe? Washington: US Department of Energy, DOE/EV-0004 (1977).Google Scholar
  5. Spent Fuel Storage Factbook: Facts Booklet. Washington: US Department of Energy, DOE/NE-005 (1980).Google Scholar
  6. Transportbehälter - Die trockene Lagerung von ausgedienten Brennelementen. Hannover: Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK). 1979.Google Scholar

Uranium/plutonium fuel cycle

  1. Baumgärtner, F.: Chemie der nuklearen Entsorgung. München: Karl Thiemig. 1978.Google Scholar
  2. Benedict, M., et al.: Nuclear Chemical Engineering. New York: McGraw-Hill. 1981.Google Scholar
  3. Bericht über das in der Bundesrepublik Deutschland geplante Entsorgungszentrum für ausgediente Brennelemente aus Kernkraftwerken. Hannover: Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen (DWK). 1977.Google Scholar
  4. Cohen, B.: High-level Radioactive Waste from Light Water Reactors. Reviews of Modern Physics 49, 1–20 (1977).CrossRefADSGoogle Scholar
  5. Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO). Washington: US Nuclear Regulatory Commission, NUREG-002 (1976).Google Scholar
  6. Fischer, U., Wiese, H.W.: KORIGEN - Ein Programm zur Bestimmung des nuklearen Inventars von Reaktorbrennstoffen im Brennstoffkreislauf Kernforschungszentrum Karlsruhe, KfK-3014 (1982).Google Scholar
  7. Haug, H.O.: Zerfallsrechnungen verschiedener mittelaktiver und actinidenhaltiger Abfälle des LWR-Brennstoffkreislaufs; Teil I: Modellmäßig abgeleitete Basisdaten, Aktivität und Wärmeleistung; Teil II: Radiotoxizitätsvergleich. Kernforschungszentrum Karlsruhe, KfK-3221 (Part I) and KfK-3222 (Part II) (1981).Google Scholar
  8. Kennies, H.H., Körting, K.: Nukleare Sicherheit von Wiederaufarbeitungsanlagen. Kernforschungszentrum Karlsruhe, KfK-2399 (1976).Google Scholar
  9. International Nuclear Fuel Cycle Evaluation, Reprocessing, Plutonium Handling, Recycle. Report of INFCE Working Group 4. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  10. Lakey, L.T.: A Safety Analysis for the Nuclear Fuel Recovery and Recychng Center. Nuclear Technology 43, 213–221 (1979).Google Scholar
  11. Leblanc, J.M., Vanden Bemden, E.: Chemical Aspects of Mixed Oxide Fuel Production. Radiochimica Acta 25, 149–152 (1978).Google Scholar
  12. Rapin, M.: Reprocessing: Experience and Outlook. In: World Nuclear Energy - Accomphshments and Perspectives, Proc. Int. Conference Washington, 17–21 November 1981. Transactions American Nuclear Society 37, 176–183 (1981).Google Scholar

Thorium/U-233 fuel cycle

  1. Feraday, M.A.: Remote Fabrication of (U-233/Th) O2 Pellet-Type Fuels for CANDU Reactors. Transactions American Nuclear Society 32, 233–234 (1979).Google Scholar
  2. International Nuclear Fuel Cycle Evaluation, Advanced Fuel Cycle and Reactor Concepts. Report of INFCE Working Group 8. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  3. Lotts, A.L., et al.: HTGR Fuel and Fuel Cycle Technology. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 3, pp. 433–452. Vienna: International Atomic Energy Agency. 1977.Google Scholar
  4. Merz, E.: Wiederaufarbeitung thoriumhaltiger Kernbrennstoffe im Lichte proliferationssicherer Brennstoffkreisläufe. Naturwissenschaften 65, 424–431 (1978).CrossRefADSGoogle Scholar
  5. Orth, D.A.: Savannah River Plant Thorium Reprocessing Experience. Nuclear Technology 43, 63–74 (1979).Google Scholar
  6. Report to the American Physical Society by the Study Group on Nuclear Fuel Cycles and Waste Management (Pines, D., ed.). Reviews of Modern Physics 50 (1), Part II (1978).Google Scholar
  7. Zimmer, E., et al.: Aqueous Chemical Processes for the Preparation of High Temperature Reactor Fuel Kernels. Radiochimica Acta 25, 161–169 (1978).Google Scholar

Uranium/plutonium fuel cycle of fast breeder reactors

  1. Allardice, R.H. et al.: Fast Reactor Fuel Reprocessing in the United Kingdom. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 3, pp. 615–630. Vienna: International Atomic Energy Agency. 1977.Google Scholar
  2. Auchapt, P., et al.:The French R&D Programme for Fast Reactor Fuel Reprocessing. In: Fast Reactor Fuel Reprocessing, Proc. Symposium, Dounreay, 15–18 May 1979, pp. 51–59. London: Society of Chemical Industry. 1980.Google Scholar
  3. Barret, T.R.: The Reconstruction of the Fast Reactor Reprocessing Plant, Dounreay. In: Fast Reactor Fuel Reprocessing, Proc. Symposium, Dounreay, 15–18 May 1979, pp. 17–35. London: Society of Chemical Industry. 1980.Google Scholar
  4. Baumgärtner, F., Ochsenfeld, W.: Development and Status of LMFBR Fuel Reprocessing in the Federal Republic of Germany. Kernforschungszentrum Karlsruhe, KfK-2301 (1976).Google Scholar
  5. Bishop, J.F., etal.: Fast Reactor Fuel Design and Development. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 3, pp. 377–391. Vienna: International Atomic Energy Agency. 1977.Google Scholar
  6. Ebert, K.H.: Die Wiederaufarbeitung von Schnellbrüter-Brennelementen. Atomkernenergie/Kerntechnik 36, 259–263 (1980).Google Scholar
  7. Funke, P., et al.: Weiterentwicklung des oxidischen Brennstoffes zum Schnellbriitereinsatz. Atomkernenergie/Kerntechnik 36, 253–258 (1980).Google Scholar
  8. International Nuclear Fuel Cycle Evaluation, Fast Breeder Reactors. Report of INFCE Working Group 5. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  9. Sauteron, J.: Technologie du retraitement des combustibles des réacteurs rapides. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 3, pp. 633–645. Vienna: International Atomic Energy Agency. 1977.Google Scholar

Waste conditioning and waste disposal

  1. Closs, K.D.: Vergleich der verschiedenen Entsorgungsalternativen und Beurteilung ihrer Reahsierung. Kernforschungszentrum Karlsruhe, KfK-3000 (1980).Google Scholar
  2. Environmental Aspects of Commercial Radioactive Waste Management. Washington: US Department of Energy, DOE/ET-0029 (1979).Google Scholar
  3. Environmental Survey of the Reprocessing and Waste Management Portions of the LWR Fuel Cycle. Washington: US Nuclear Regulatory Commission, NUREG-0016 (1976).Google Scholar
  4. International Nuclear Fuel Cycle Evaluation, Waste Management and Disposal. Report of INFCE Working Group 7. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  5. Rothemeyer, H., Closs, K.D.: High Level Waste Disposal. In: World Nuclear Energy - Accomplishments and Perspectives, Proc. Int. Conference, Washington, 17–21 November 1981. Transactions American Nuclear Society 37, 165–174 (1981).Google Scholar
  6. Technology of Commercial Radioactive Waste Management. Washington: US Department of Energy, DOE/ET-0028 (1979).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Günther Kessler
    • 1
  1. 1.Institut für Neutronenphysik und ReaktortechnikKernforschungszentrum KarlsruheFederal Republic of Germany

Personalised recommendations