Breeder Reactors with a Fast Neutron Spectrum

  • Günther Kessler
Part of the Topics in Energy book series (TENE)


Breeder reactors with a fast neutron spectrum have a sufficiently high breeding ratio to allow independence of any external supply of fissile material in practical operation. The U-238/Pu-239 or the Th-232/U-233 conversion processes enable this type of reactor to utilize natural uranium or thorium theoretically with 100% efficiency and practically, including losses in the fuel cycle, with an efficiency in excess of 60%. This is a factor of 100 higher than the fuel utilization in present standard LWR’s without reprocessing, and approximately a factor of 25 to 50 higher than in converter reactors operating with high conversion ratios and in the recycling mode (see Section 2.6 and Chapter 6).


Fuel Element Steam Generator Fast Breeder Reactor Neutron Energy Spectrum Roof Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Literature

General, FBR plant description

  1. Barthold, W.P., etal.: Optimization of Radially Heterogeneous 1000 MWe LMFBR Core Configurations. Palo Alto, Cal.: Electric Power Research Institute, EPRI-NP-1000 (1979).Google Scholar
  2. Carle, R.: SUPERPHENIX: First Commercial Plant of the Fast Breeder Line. J. British Nuclear Energy Society 14, 183–190 (1975).Google Scholar
  3. Clinch River Breeder Reactor Project - A Special Feature Issue. Nuclear Engineering International 19, 835–865 (1974).Google Scholar
  4. Design, Construction and Operating Experience of Demonstration LMFBR’s, Proc. Int. Symposium, Bologna, Italy, 10–14 April 1978. Vienna: International Atomic Energy Agency. 1978.Google Scholar
  5. Dickson, P.W., Doncals, R.A.: Heterogeneous Core Designs for LMFBR’s. In: Advances in Nuclear Science and Technology, Vol. 12, pp. 33–91. New York-London: Plenum Press. 1980.Google Scholar
  6. Fast Flux Test Facility (FFTF) - A Special Survey. Nuclear Engineering International 17, 613–628 (1972).Google Scholar
  7. Häfele, W., et al.: Fast Breeder Reactors. In: Annual Review of Nuclear Science, Vol. 20, pp. 393–434. Palo Alto, Cal.: Annual Reviews Inc. 1970.Google Scholar
  8. Häfele, W., et al.: Fusion and Fast Breeder Reactors. Laxenburg, Austria: International Institute for Applied Systems Analysis, RR-77–8 (1977).Google Scholar
  9. International Nuclear Fuel Cycle Evaluation, Fast Breeders. Report of INFCE Working Group 5. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  10. Judd, A.M.: Fast Breeder Reactors - An Engineering Introduction. Oxford: Pergamon Press. 1981.Google Scholar
  11. Kazachkovskij, O.D., etal: The Present Status of the Fast Reactor Programme in the USSR. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 1, pp. 393–414. Vienna: International Atomic Energy Agency. 1977.Google Scholar
  12. Khodarev, E.: Liquid Metal Fast Breeder Reactors. International Atomic Energy Agency Bulletin 20 (6), 29–38 (1978).Google Scholar
  13. Köhler, M., et al.: Design Considerations for the Primary System and the Primary Components of SNR-2. In: Optimisation of Sodium-Cooled Fast Reactors, Proc. Int. Conference, London, 28 November-1 December 1977, pp. 249–253. London: British Nuclear Energy Society. 1977.Google Scholar
  14. Leipunskii, A.L, et al.: A Nuclear Power Station with the BN-600 Reactor. Soviet Atomic Energy (Atomnaya Energiya) 25, 1216–1221 (1968).CrossRefGoogle Scholar
  15. Meshkov, A.G., et al.: Prospects of Development of Fast Nuclear Power Reactors in the USSR. In: Nuclear Energy Maturity, Proc. European Nuclear Conference, Paris, 21–25 April 1975 (Zaleski, P., ed.). Vol. 11, pp. 120–124. Oxford: Pergamon Press. 1976.Google Scholar
  16. Morgenstern, F.H.: Der Stand des Projektes Kernkraftwerk Kalkar (SNR 300). Atomkernenergie/Kerntechnik 36, 250–252 (1980).Google Scholar
  17. PFR - A Special Feature on the British Prototype Fast Breeder Reactor. Nuclear Engineering International 16, 629–650 (1971).Google Scholar
  18. PHENIX - A Special Feature on the French Prototype Fast Breeder Reactor. Nuclear Engineering International 16, 557–580 (1971).Google Scholar
  19. Schröder, R., Wagner, J.: Überlegungen zur Einführung schneller Brutreaktoren im DEBENE-Bereich. Kernforschungszentrum Karlsruhe, KfK-Ext. 25/75–1 (1975).Google Scholar
  20. SNR-300, Liquid Metal Cooled Fast Breeder Reactor Prototype Plant. Nuclear Engineering International 21 (246), 39–58 (1976).Google Scholar
  21. Vendryes, G., et al.: Fast Neutron Reactors - Advancement from Initial Research to the PHENIX Power Plant. Argonne National Laboratory, ANL-Trans-1007 (1975).Google Scholar
  22. Waltar, A.E., Reynolds, A.B.: Fast Breeder Reactors. New York: Pergamon Press. 1981.Google Scholar
  23. Yevick, J.G., Amorosi, A.: Fast Reactor Technology. Cambridge, Mass.: The MIT Press. 1966.Google Scholar

Fast reactor physics and safety

  1. Bunz, H., Scholle, U.: Study of the Containment System for the Planned SNR-2 FBR. Proc. 15th DOE Nuclear Aircleaning Conference, Boston, 7–10 August 1978. Springfield, Va.: National Technical Information Servide, US Department of Commerce, CONF 780819 (1979).Google Scholar
  2. Engineering of Fast Reactors for Safe and Reliable Operations. Proc. Int. Conference, Karlsruhe, 9–13 October 1972. Kernforschungszentrum Karlsruhe. 1973.Google Scholar
  3. Fast Reactor Physics. Proc. Int. Symposium, Aix-en-Provence, 24–28 September 1979. Vienna: International Atomic Energy Agency. 1980.Google Scholar
  4. Fast Reactor Safety, Proc. Int. Meeting, Beverly Hills, Cal, 2–4 April 1974. Washington: US Atomic Energy Commission, CONF-740401 (1974).Google Scholar
  5. Fast Reactor Safety and Related Physics, Proc. Int. Meeting, Chicago, III, 5–8 October 1976. Springfield, Va.: National Technical Information Service, US Department of Commerce, CONF-761001 (1976).Google Scholar
  6. Fast Reactor Safety Technology, Proc. Int. Meeting, Seattle, Wash., 19–23 August 1979. LaGrange Park, III: American Nuclear Society. 1979.Google Scholar
  7. Fidler, R.S., Collins, M.J.: A Review of Corrosion and Mass Transport in Liquid Sodium and the Effects on the Mechanical Properties. Atomic Energy Review 13, 3–50 (1975).Google Scholar
  8. Friedrich, HJ.: SNR-300 Tank External Core Retention Device, Design and Philosophy Behind It. Proc. Second Post-Accident Heat Removal Information Exchange, Albuquerque, N.M., 13–14 November 1975. Sandia Laboratories, SAND-76–9008 (1977).Google Scholar
  9. Graham, J.: Fast Reactor Safety. New York: Academic Press. 1971.Google Scholar
  10. Häfele, W.: Prompt überkritische Leistungsexkursionen in schnellen Reaktoren. Nukleonik 5, 201–208 (1963).Google Scholar
  11. Hummel, H.H., Okrent, D.: Reactivity Coefficients in Large Fast Power Reactors. Hinsdale, 111.: American Nuclear Society. 1970.Google Scholar
  12. IAEA International Working Group on Fast Reactors, IAEA Study Group Meeting on Steam Generators for LMFBR’s, Bensberg, Germany, 14–17 October, 1974. Vienna: International Atomic Energy Agency, 1974.Google Scholar
  13. Jordan, H., et al.: PARDISEKO III - A Computer Code for Determining the Behavior of Contained Nuclear Aerosols. Kernforschungszentrum Karlsruhe, KfK-2151 (1975).Google Scholar
  14. Kessler, G., et al.: Safety of the LMFBR and Aspects of Its Fuel Cycle. In: Nuclear Power and Its Fuel Cycle, Proc. Int. Conference, Salzburg, 2–13 May 1977, Vol. 5, pp. 661–674. Vienna: International Atomic Energy Agency. 1977.Google Scholar
  15. Kiefhaber, E.: The KFKINR-Set of Group Constants. Kernforschungszentrum Karlsruhe, KfK-1572 (1972).Google Scholar
  16. Nicholson, R.B., Fischer, E.A.: The Doppler Effect in Fast Reactors. Advances in Nuclear Science and Technology, Vol. 4, pp. 109–195. New York-London: Academic Press. 1968.Google Scholar
  17. Tang, Y.S., et al.: Thermal Analysis of Liquid Metal Fast Breeder Reactors. LaGrange Park, III: American Nuclear Society. 1978.Google Scholar
  18. van de Vate, J.F.: The Safety of SNR 300 and the Aerosol Model; A Summary Report of the RCN Aerosol Research 1967–1971. RCN Petten, Netherlands, RCN-174 (1972).Google Scholar
  19. Vossebrecker, H., Grönefeld, G.: Brennstoffrückhaltung im Reaktortank von natriumgekühlten Reaktoren nach hypothetischen Störfällen mit Kernschmelzen. Atomkernenergie-Kerntechnik 36, 288–291 (1980).Google Scholar

Gas cooled fast breeder reactors

  1. Dalle Donne, M., Goetzmann, C.A.: Design and Safety Studies for the Gas-Cooled Fast Reactor in the Federal Republic of Germany. In: Gas-Cooled Reactors with Emphasis on Advanced Systems, Proc. Symposium, Jülich, 13–17 October 1975, Vol. II, pp. 377–396. Vienna: International Atomic Energy Agency. 1976.Google Scholar
  2. Melesse-d’Hospital, G., Simon, R.H.: Status of Gas-Cooled Fast Breeder Reactor Programs. Nuclear Engineering and Design 40, 5–12 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Günther Kessler
    • 1
  1. 1.Institut für Neutronenphysik und ReaktortechnikKernforschungszentrum KarlsruheFederal Republic of Germany

Personalised recommendations