Grand Unification and the Double Beta-Decay

  • Amand Faessler
Part of the Few-Body Systems book series (FEWBODY, volume 5)


Models of the unification of the electroweak and the strong interaction predict that the neutrino is a Majorana particle and therefore esssentially identical with its own antiparticle. In such grand unified models the neutrino has also a finite mass and a slight right-handed weak interaction, since the model is left-right symmetric. These models have also left handed and right-handed vector bosons to mediate the weak interactions. If these models are correct the neutrinoless double beta-decay is feasable. Thus if one finds the neutrinoless double beta-decay one knows that the standard model can not be correct in which the neutrino is a Dirac particle and therefore different from its antiparticle. Although the neutrinoless double beta-decay has not been seen it is possible to extract from the lower limits of the lifetime against the double neutrinoless beta-decay upper limits for the effective electron-neutrino mass and for the effective mixing angle of the right-handed and the left-handed vector bosons mediating the weak interaction. One also can obtain an effective upper limit for the mass ratio of the light and the heavy vector bosons. The extraction of this physical quantities from the data is made difficult due to the fact that the weak interaction must not be diagonal in the representation of the mass matrix of the six neutrinos requested by such left-right symmetric models.


Neutrino Mass Vector Boson Grand Unify Theory Finite Mass Majorana Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Davis R., 1955 Phys. Rev. 97 766ADSCrossRefGoogle Scholar
  2. [2]
    Lee T.D. and Yang, C.N. 1956, Phys. Rev. 104 254ADSCrossRefGoogle Scholar
  3. [3]
    Wu C.S., Ambler E., Hayward R.W., Hopper D.D. and Hudson, R.P. 1957 Phys. Rev. 105 1413ADSCrossRefGoogle Scholar
  4. [4]
    Langacker P., 1981 Phys. Rep. 72 185ADSCrossRefGoogle Scholar
  5. [5]
    Fritzsch H. and Minkowski R., 1981 Phys. Rep. 73 67ADSCrossRefGoogle Scholar
  6. [6]
    Kirsten 1986 Proc.Int.Symp. Nuclear Beta-Decays and Neutrino,(Osaka, 1986 ) ed. Kotani, Ejiri, Takasugi ( Singapore, World Scientific, p. 81 )Google Scholar
  7. [7]
    Manuel, O.K., Proc. Int. Symp. on Nuclear Beta-Decays and Neutrino (Osaka June 1986, eds. Kotani, Ejiri, Takasugi ( Singapore, World Scientific, p. 71 )Google Scholar
  8. [8]
    Elliott S.R., Hahn A.A. and Moe M.K., 1987 Phys. Rev. Lett. 59 2020ADSCrossRefGoogle Scholar
  9. [9]
    M. K. Moe, 14th EPS Nucl. Phys. Conf. Bratislava, Oct. 22–26, 1990, (this Volume; H. Ejiri, ibid.Google Scholar
  10. [10]
    Haxton W.C. and Stephenson G.J., 1984 Progr. Part. Nucl. Phys. 12 409ADSCrossRefGoogle Scholar
  11. [11]
    Tomoda T., Faessler A., Schmid K.W. and Grümmer F., 1986 Nucl. Phys. A452 591CrossRefGoogle Scholar
  12. [12]
    Avignone III F.T., Brodzinski R.L., Evans J.C., Ir., Hensley K., Miley H.S. and Reeves J.H., 1986 Phys. Rev. C34 666ADSMathSciNetGoogle Scholar
  13. [13]
    Caldwell D.O., Eisberg R.M., Grumm D.M., Hale D.L., Witherell M.S., Goulding F.S., Laudis D.A., Madden N.W., Malone D.F., Pehl R.H. and Smith A.R., 1986 Phys. Rev. D33 2737Google Scholar
  14. [14]
    Caldwell D.O., Osaka Conference, June 1986 \( \left( {\tau \begin{array}{*{20}{c}} {0\nu } \\ {1/2} \end{array}\left( {{}^{76}Ge} \right) >3.9*{{10}^{23}}years}\right) \) Berkeley Conference, July 1986 \( \left( {\tau \begin{array}{*{20}{c}} {0\nu } \\ {1/2} \end{array}\left( {{}^{76}Ge} \right)> 4.7*{{10}^{23}}years} \right) \) Google Scholar
  15. [15]
    Nolte E. et al., 1985 Z. Physik A306 223ADSCrossRefGoogle Scholar
  16. [16]
    Kleinheinz P. et al., 1985 Phys. Rev. Lett. 55 2664ADSCrossRefGoogle Scholar
  17. [17]
    Civitarese O., Faessler A. and Tomoda T., 1987 Phys. Lett. B194 11Google Scholar
  18. [18]
    Bohr A. and Mottelson B.R., Nucl. Structure, Vol. 1 ( Benjamin, New York, 1969 )Google Scholar
  19. [19]
    Bertsch G., The Practitioners Shell Model ( American Elsevier, New York, 1972 )Google Scholar
  20. [20]
    Tomoda T. and Faessler A., 1987 Phys. Lett. B199 2383CrossRefGoogle Scholar
  21. [21]
    Vogel P. and Zirnbauer M.R., 1986 Phys. Rev. Lett. 57 3148ADSCrossRefGoogle Scholar
  22. [22]
    Muto K. and Klapdor H.V., 1988 Phys. Lett. 201B 420CrossRefGoogle Scholar
  23. [23]
    Engel J., Vogel P., Civitarese O. and Zirnbauer M.R., 1988 Phys.Lett. B208 187CrossRefGoogle Scholar
  24. [24]
    Civitarese O., Faessler A., Tomoda T., 1987 Phys. Lett. B194 11Google Scholar
  25. [25]
    Civitarese O., Faessler A., Suhonen J., Wu X. R., Nucl. Phys. A.Google Scholar
  26. [26]
    Raduta A. A., Faessler A., Stoica S., Kaminski W. A., Phys. Lett. (1991) to be publishedGoogle Scholar
  27. [27]
    Kirpichnikov L. V.: Proc. Conf. on Lepton-Photon Interaction, Stanford (1989)Google Scholar
  28. [28]
    Fisher P., Boehm F., Bovet E., Egger J. P., Henrikson H., Gabathuler K., Mitchell L. W., Renser D., Treichel M., Vuillenmier J. L., 1989 Phys. Lett. B218 257CrossRefGoogle Scholar
  29. [29]
    Kirsten T. et al. 1986 Proc. Int. Symp. on Nuclear Beta-Decays and Neutrino; (Osaka, 1986 ); ( Singapore, World Scientific ) p. 251Google Scholar
  30. [30]
    Elliott S. R., Hahn A. A., Moe M. K., 1986 Phys. Rev. Lett. 56 2582Google Scholar
  31. [31]
    Civitarese O., Faessler A., Suhonen J., Wu X. R., Nuclear structure calculation of the two neutrino ßß- decay transition 100 MoRu; J. Phys. G. 17 (1991) 943–953ADSCrossRefGoogle Scholar
  32. [32]
    Faessler A., 1988 Progr. Part. Nucl. Phs. 21 183ADSCrossRefGoogle Scholar
  33. [33]
    T. Kotani, 14th EPS Nucl. Phys. Conf. Bratislawa, Oct. 22–26, 1990; J. Phys. GGoogle Scholar
  34. [34]
    Klimenko A. A. et al., Institute of Nuclear Research Moscow and Baksan, Personal Comm.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Amand Faessler
    • 1
  1. 1.University of TübingenInstitute of Theoretical PhysicsTübingenGermany

Personalised recommendations