Advertisement

The Relativistic Few-Body Problem

  • F. C. Khanna
  • X. Q. Zhu
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 5)

Abstract

Several three-dimensional reductions of the Bethe-Salpeter equation, for relativistic two-body problem obtained by a partial summation of the covariant perturbation series, have been considered. A one-time Bethe-Salpeter equation is constructed. Equations due to Blankenbecler and Sugar and Gross appear as approximations to the one-time equation. The one-time formalism is used to study the N-N scattering at high energies. Results for various approximation schemes are compared. Extension of the one-time formalism to a system with more than two particles is possible.

Keywords

Faddeev Equation Partial Summation Feynman Propagator High Momentum Component Free Dirac Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salpeter, E.E., Bethe, H.A.: Phys. Rev. 84, 1232 (1951).ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Wick, G.C.: Phys. Rev. 96, 1124 (1954).ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Tjon, J.A.: Nucl. Phys. A 463, 157c (1987) and references quoted therein.Google Scholar
  4. 4.
    Blankenbecler, R. and Sugar, R.L.: Phys. Rev. 142, 1051 (1966); Gross, F.: Phys. Rev. 186, 1448 (1969).Google Scholar
  5. 5.
    Ruan, T.N., Zhu, X.Q., Ho, T.H., Ching, C.R., Zhao, W.Q.: Comm High Energy and Nucl. Phys. (Beijing) 5, 393 (1981); Khanna, F.C., Zhu, X.Q.: Prog. Nucl. Phys. (Hwang, W.-Y., Lee, S.-C., Ernst, D.J. (eds.)), North Holland, N.Y., p. 445 (1990).Google Scholar
  6. 6.
    Machleidt, R., Holinde, K., Elster, Ch.: Phys. Rev. 149, 1 (1987).Google Scholar
  7. 7.
    Gross, F., Van Oerden, J.W., Holinde, K.: Phys. Rev. C41, 1909 (1990).ADSGoogle Scholar
  8. 8.
    Mobed, N., Zhu, X.Q., Khanna, F.C.: Can. J. Phys. 68, 388 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    Zhu, X.Q., Gourishankar, R., Khanna, F.C., Leung, G., Mobed, N.: to be published.Google Scholar
  10. 10.
    Zhu, X.Q., Gourishankar, R., Khanna, F.C.: to be published.Google Scholar
  11. 11.
    Dymarz, R., Khanna, F.C.: Nucl. Phys. A516, 549 (1990); Thé, I., et al: Phys. Rev. Lett. 67, 173 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • F. C. Khanna
    • 1
    • 2
  • X. Q. Zhu
    • 1
    • 2
  1. 1.Theoretical Physics InstituteUniversity of AlbertaEdmonton, AlbertaCanada
  2. 2.TRIUMFVancouverCanada

Personalised recommendations